圆柱体积教案精选6篇

时间:
Youaremine
分享
下载本文

想要有效管理课堂,教师需要在教案中设定规则和秩序,撰写教案的同时,老师们应关注学生的情感需求,以下是美篇六六网小编精心为您推荐的圆柱体积教案精选6篇,供大家参考。

圆柱体积教案精选6篇

圆柱体积教案篇1

教学内容:

教材第10~12页圆柱的体积公式,例1、例2和练一练,练习二第1~5题。

教学要求:

1.使学生理解和掌握圆柱的体积计算公式,并能根据题里的条件正确地求出圆柱的体积。

2.培养学生初步的空间观念和思维能力;让学生认识转化的思考方法。

教具准备:

圆柱体积演示教具。

教学重点:

理解和掌握圆柱的体积计算公式。

教学难点:

圆柱体积计算公式的推导。

教学过程:

一、铺垫孕伏:

1.求下面各圆的面积(回答)。

(1)r=1厘米;(2)d=4分米;(3)c=6.28米。

要求说出解题思路。

2.想一想:学习计算圆的面积时,是怎样得出圆的面积计算公式的?指出:把一个圆等分成若干等份,可以拼成一个近似的长方形。这个长方形的面积就是圆的面积。

3.提问:什么叫体积?常用的体积单位有哪些?

4.已知长方体的底面积s和高h,怎样计算长方体的体积?(板书:长方体的体积=底面积高)

二、自主研究:

1.根据学过的体积概念,说说什么是圆柱的体积。(板书课题)

2.怎样计算圆柱的体积呢?我们能不能根据圆柱的底面可以像上面说的转化成一个长方形,通过切、拼的方法,把圆柱转化为已学过的立体图形来计算呢,现在我们大家一起来讨论。

3.公式推导。(可分小组进行)

(1)请同学指出圆柱体的底面积和高。

(2)回顾圆面积公式的推导。(切拼转化)

(3)探索求圆柱体积的公式。

根据圆面积剪、拼转化成长方形的思路,我们也可以运用切拼转化的方法把圆柱体变成学过的几何形体来推导出圆柱的体积计算公式。你能想出怎样切、拼转化吗?请同学们仔细观察以下实验,边观察边思考圆柱的体积、底面积、高与拼成的几何形体之间的关系。教师演示圆柱体积公式推导演示教具:把圆柱的底面分成许多相等的扇形(数量一般为16个),然后把圆柱切开,照下图拼起来,(图见教材)就近似于一个长方体。可以想象,分成的扇形越多,拼成的立体图形就越接近于长方体。

(4)讨论并得出结果。

你能根据这个实验得出圆柱的体积计算公式吗?为什么?让学生再讨论:圆柱体通过切拼,圆柱体转化成近似的体。这个长方体的底面积与圆柱体的底面积,这个长方体的高与圆柱体的高。因为长方体的体积等于底面积乘以高,所以,圆柱体的体积计算公式是:。(板书:圆柱的体积=底面积高)用字母表示:。(板书:v=sh)

(5)小结。

圆柱的体积是怎样推导出来的?计算圆柱的体积必须知道哪些条件?

4.教学例1。

出示例1,审题。提问:你能独立完成这题吗?指名一同学板演,其余学生做在练习本上。集体订正:列式依据是什么?应注意哪些问题?(单位统一,最后结果用体积单位)

0.9米=90厘米2490=2160(立方厘米)

5.做练习二第1题。

让学生做在课本上。指名口答,集体订正。追问:圆柱的体积是怎样算的?

6.教学试一试一个圆柱的底面半径是2分米,高是8米,求它的体积。指名一人板演,其余学生做在练习本上。评讲试一试小结:求圆柱的体积,必须知道底面积和高。如果不知道底面积,只知道半径r,通过什么途径求出圆柱的体积?如果知道d呢?知道c呢?知道r、d、c,都要先求出底面积再求体积。

7.教学例2。

出示例2,审题。小组讨论计算方法,然后学生做在练习本上。集体订正:列式依据是什么?应注意哪些问题?(单位统一,最后结果用体积单位,结果保留整数。)

三、巩固练习

第12页,练一练。

四、课堂小结

这节课学习了什么内容?圆柱的体积怎样计算,这个公式是怎样得到的?指出:这节课,我们通过转化,把圆柱体切拼转化成长方体,(在课题下板书:圆柱些长方体)得出了圆柱体的体积计算公式v=sh。

五、布置作业

练习二第2,3,4,5题及数训。

六、板书设计:

圆柱的体积

长方体的体积=底面积高

圆柱的体积=底面积高

v=sh

圆柱体积教案篇2

教学目标:

1、了解圆柱体体积(包括容积)的含义,进一步理解体积和容积的含义。

2、经历探索圆柱体积计算方法的过程,掌握圆柱体积的计算方法,能正确计算圆柱的体积,并会解决一些简单的实际问题。

3、培养初步的空间观念和思维能力;进一步认识“转化”的思考方法。

教学重点:

理解和掌握圆柱的体积计算公式,会求圆柱的体积

教学难点:

理解圆柱体积计算公式的推导过程。

教学用具:

圆柱体积演示教具。

教学过程:

一、复述回顾,导入新课

以2人小组回顾下列内容:(要求1题组员给组长说,组长补充。2题同桌互说。说完后坐好。)

1、说一说:(1)什么叫体积?常用的体积单位有哪些?

(2)长方体、正方体的体积怎样计算?如何用字母表示?

长方体、正方体的体积=()×()用字母表示()

2、求下面各圆的面积(只说出解题思路,不计算。)

(1)r=1厘米;(2)d=4分米;(3)c=6.28米。

(二)揭示课题

你想知道课本第8页左上方“柱子的体积”吗?你想知道“一个圆柱形杯子能装多少水”吗?今天就来学习“圆柱的体积”。(板书课题)

二、设问导读

请仔细阅读课本第8-9页的.内容,完成下面问题

(一)以小组合作完成1、2题。

1、猜一猜,圆柱的体积可能等于()×()

2、我们在学习圆的面积计算公式时,指出:把一个圆分成若干等份,可以拼成一个近似的长方形。这个长方形的面积就是圆的面积。圆柱的底面也可以像上面说的那样转化成一个近似的长方形,通过切、拼的方法,把圆柱转化为一个近似的长方体(如课本第8页右下图所示)。(用自己手中的学具进行切、拼)观察拼成的长方体与原来的圆柱之间的关系

(1)圆柱的底面积变成了长方体的()。

(2)圆柱的高变成了长方体的()。

(3)圆柱转化成长方体后,体积没变。因为长方体的体积=()×(),所以圆柱的体积=()×()。如果用字母v代表圆柱的体积,s代表底面积,h代表高,那么圆柱的体积公式可用字母表示为()

[汇报交流,教师用教具演示讲解2题]

(二)独立完成3、4题。

3、如果已知课本第8页左上方柱子的底面半径为0.4米,高5米,怎样计算柱子的体积?

先求底面积,列式计算()

再求体积,列式计算()

综合算式()

4、要想知道“一个圆柱形杯子能装多少水?”可以用杯子的“()×()”(杯子厚度忽略不计)

?要求:完成之后以小组互查,有争议之处四人大组讨论。】

教师根据学生做题情况挑选一些小组进行汇报、交流,并对小组学习情况进行评价。

三、自我检测

1、课本9页试一试

2、课本9页练一练1题(只列式,不计算)

?要求:完成后小组互查,教师评价】

四、巩固练习

课本练一练的2、3、4题

?要求:组长先给组员讲解题思路,然后小组内共同完成】

教师进行错例分析。

五、拓展练习

1、课本练一练的5题

2、有一条围粮的席子,长6.28米,宽2.5米,把它围成一个筒状的粮食囤,怎样围盛的粮食多?最多能盛多少立方米的粮食?

?要求:先组内讨论确定解题思路,再完成】

六、课堂总结,布置作业

1、总结:这节我们利用转化的方法,把圆柱转化为长方体来推导其体积公式,切记用“底面积×高”来求圆柱的体积。

2、作业:课本练一练6题

圆柱体积教案篇3

教学目标:

1、理解圆柱体积公式的推导过程。

2、能够初步地学会运用体积公式解决简单的实际问题。

3、进一步提高学生解决问题的能力。

教学重、难点:

1、理解圆柱体积公式的推导过程。

2、能够初步地学会运用体积公式解决简单的实际问题。

3、理解圆柱体积公式的推导过程。

教学准备:

圆柱切割组合模具、小黑板。

教学过程:

一、创设情境,生成问题

1、什么是体积?(物体所占空间的大小叫做物体的.体积。)

2、长方体的体积该怎样计算?归纳到底面积乘高上来。

3、圆的面积怎样计算?

二、探索交流,解决问题

1、计算圆的面积时,是把圆面积转化成我们学过的长方形进行计算的,能不能把圆柱转化成我们学过的立体图形来计算它的体积?

(启发学生思考。)

2、把圆柱的底面分成许多相等的扇形(16等分),然后把圆柱沿高切开,可能会拼成怎样的图形?教师演示,引导学生进行观察。

3、思考:

(1)圆柱切开后可以拼成一个什么形体?(长方体)

(2)通过实验你发现了什么?小组讨论:实验前后,什么变了?什么没变?讨论后,整理出来,再进行汇报。

(拼成的近似长方体体积大小没变,形状变了,拼成的近似长方体和圆柱相比,底面形状变了,由圆变成了近似长方形,而底面的面积大小没有发生变化。近似长方形的高就是圆柱的高,没有变化。)

4、推导圆柱体积公式

小组讨论:怎样计算圆柱的体积?

学生汇报讨论结果。

长方体的体积可以用底面积乘高来计算,而在推导过程中,长方体的底面积就是圆柱的底面积,高就是圆柱的高,所以圆柱的体积也可以用底面积乘高来计算。

师:圆柱的体积怎样计算?用字母公式,怎样表示?

板书:v=sh

5、算一算:已知一根柱子的底面半径为0.4米,高为5米。你能算出它的体积吗?

三、巩固应用练习。

1、一个圆柱形水桶,从桶内量得底面直径是3分米,高是4分米,这个水桶的容积是多少升?说明:求水桶的容积,就是求水桶的体积。想一想先求什么?

2、一根圆柱形铁棒,底面周长是12.56厘米,长是100厘米,它的体积是多少?先求底面半径再求底面积,最后求体积。已知底面周长对解决问题有什么帮助吗?必须先求出什么?

四:课堂小结:

通过这节课你学会了哪些知识,有什么收获?

五:课后作业:

教材第9页,练一练第1、3、4、题

圆柱体积教案篇4

最近,本人在《小学教学设计》看到一则“圆柱的体积”教学实录精彩片段,它以一种全新的视角诠释了新课标所倡导的理念,给我留下了较为深刻的印象。现把它撷取下来与各位同行共赏。

……

师:圆柱有大有小,你觉得圆柱体积应该怎样计算呢?

生:(绝大部分学生举起了手)底面积乘高。

师:那你们是怎样理解这个计算方法的呢?

生1:我是从书上看到的。

(举起的手放下了一大半。很明显,大部分同学都看到或听到这个结论,并不理解实质的涵义。但仍有几位学生的手高高举起,跃跃欲试,脸上的神情告诉老师:他们有更高明的答案。老师便顺水推舟,让他们来讲。)

生2:我是这样思考的:长方体、正方体和圆柱体它们都是立体图形,体积都是指它们所占空间的大小。而长方体、正方体的体积都可以用底面积乘高来计算,所以我想计算圆柱体的体积时也应该可以用底面积乘高吧!

师:你能迅速地把圆柱体与以前学过的长方体、正方体联系起来,进而联想到圆柱体的体积计算方法。真行!当然这仅是你的猜测,要是再能证明就好了。

生3:我可以证明。推导长方体体积公式时,我们是采用摆体积单位的方法,用每层个数(底面积)×层数(高)现在求圆柱体积我们也可以沿袭这种思路,在圆柱体内部同样摆上合适的体积单位,用每层个数×层数,每层的个数也就是它的底面积,摆的层数也就是高。那不就证明了圆柱体积的计算公式就是用底面积乘高吗?

(教室里立刻响起了热烈的掌声,许多同学被他精彩的发言折服了,理性的思维散发出诱人的魅力。)

师:你真聪明,能用以前学过的知识解决今天的难题!(这时举起的手更多了。)

生4:我有个想法不知是否可行、在推导圆面积计算方法时,我们是把圆转化成了长方形,圆柱的底面就是一个圆,所以我就想是否可以把圆柱体转化成长方体呢?

师:(翘起了大拇指)你这种想法很有意思!等会你可以试一试,想想怎样分割能把一个圆柱体转化成近似的长方体。

生5:我还有一种想法:我们可以把圆柱体看成是无数个同样大小的圆片叠加而成的。那么圆柱体的体积就应该用每个圆片的面积×圆的个数。圆的个数也就相当于圆柱的高。所以我认为圆柱体的体积可以用每个圆的面积(底面积)×高。

师:了不起的一种想法!(师情不自禁的鼓起了掌。)

生6:我看过爸爸妈妈“扎筷子”。把十双同样的筷子扎在一起就变成了一个近似的圆柱体。我们可以把每根筷子看成一个长方体,那么扎成的近似圆柱体的体积应该是这二十个小长方体的体积之和。又因为它们具有同样的高度,运用乘法分配律,就变成了这二十个小长方体的底面积之和×高。

师:你真会思考问题!

生7:我还有一种想法:学习圆的面积时我们知道,当圆的半径和一个正方形的边长相等时,圆的面积约是这个正方形的3.14倍。把叠成这个圆柱体的这无数个圆都这样分割,那么圆柱体的体积不也大约是这个长方体的体积的3.14倍吗?长方体的体积用它的底面积×高,圆柱体的体积就在这基础上再乘3.14,也就是用圆柱体的底面积×高。

生8:把圆柱体形状的橡皮泥捏成等高长方体形状的橡皮泥,长方体体积用底面积乘高来计算,所以计算圆柱体的体积也是用底面积乘高吧!

师:没想到一块橡皮泥还有这样的作用,你们可真是不简单!

……

整节课不时响起孩子们、听课老师们热烈的掌声。

过去的数学课堂教学,忠诚于学科,却背弃了学生,体现着权利,却忘记了民主,追求着效率,却忘记了意义。而这个片断折射出,新课标理念下的不再是教师一厢情愿的“独白”,而是学生、数学材料、教师之间进行的一次次真情的'“对话”。

现从“对话”的视角来赏析这则精彩的片段。

一、“对话”唤发出学习热情。

?新课程标准》指出:有意义的数学学习必须建立在学生的主观愿望和知识经验的基础上,在这样的氛围中,学生的思考才能积极。在当今数字化、信息化非常发达的社会中,学生接受信息获取知识的途径非常多,圆柱体的体积计算方法对学生来说并不陌生,如果教师再按传统的教学程序(创设情境——研究探讨——获得结论)展开,学生易造成这样的错误认识:认为自己已经掌握了这部分知识而失去对学习过程的热情。而本课,教学伊始,教师提问“圆柱体的体积如何计算”,让学生先行呈现已有的知识结论,在通过问题“你是怎样理解这个公式的呢?”把学生的注意引向对公式意义的理解,学生积极主动的投入思维活动,唤发学习热情。

二、“对话”迸发出智慧的火花

“水本无华,相荡而生涟漪;石本无火,相击始发灵光。”思维的激活、灵性的喷发源于对话的启迪和碰撞。本课如果按照教材的设计:通过把圆柱体转化为长方体,研究圆柱体和长方体间的关系,得出计算公式:底面积×高,经历这样的学习过程学生的思维是千篇一律的,获得的发展也是有限的。而这位教师对教材进行相应的拓展,先呈现公式,后提问“你是怎样理解这个公式的呢?”,使学生的思维沿着各自独特的理解“决堤而出”。

三、“对话”赢得心灵的敞亮和沟通

“真行!当然这仅是你的猜测,要是再能证明就好了。”“你真聪明!能用以前学过的知识解决今天的难题!”“你这种想法很有意思!等会你可以试一试,想想怎样分割能把一个圆柱体转化成近似的长方体。”……教师不断地肯定着学生的每一种观点,引燃学生的每一丝发现的火花;同时象一位节目主持人一样,平和、真诚,倾听、接纳着学生的声音,在课堂上,学生真是神了、奇了,说出一种又一种的方法,连听课老师也情不自禁的鼓起掌来。此情此景,我们不难看出,老师能注意蹲下身来与学生交流,注意寻求学生的声音,让学生在一种“零距离”的、活跃的心理状态下敞亮心扉,放飞思想,进行着师生“视界融合”的真情对话,赢得心灵的敞亮和沟通。

数学教学在对话中进行,展示着民主与平等,凸现着创造与生成。有效的对话中不仅有信息的传输,更有思维的升华;不仅能增进学生的理解,更能促进教师的反思;不仅有继承的喜悦,更有创造的激情。这则教学片断,有很多的精彩值得我们欣赏与赞叹。我想说:我的内心很受鼓舞,我会向这位老师学习,让自己的课堂也能成就精彩的时刻!

圆柱体积教案篇5

教学目标:

1.经历探究和推导圆柱的体积公式的过程。

2.知道并能记住圆柱的体积公式,并能运用公式进行计算。

3.在自主探究圆柱的体积公式的过程中,体验、感悟数学规律的来龙去脉,知道长方体与圆柱体底面和高各部分间的对应关系。发展学生的观察能力和分析、综合、归纳推理能力。

4.激发学生的学习兴趣,让学生体验成功的快乐。

5.培养学生的转化思想,渗透辩证法和极限的思想。

教学重点:

掌握和运用圆柱体积计算公式

教学难点:

圆柱体积公式的推导过程

教具学具准备:

教学课件、圆柱体。

教学过程:

一、复习导入

1.同学们想一想,我们已经学习了哪些立体图形的体积?怎样计算长方体和正方体的体积?长方体的体积和正方体的体积的通用公式是什么呢?用字母怎样表示?

2.回忆一下圆面积的计算公式是如何推导出来的?

(结合课件演示)这是一个圆,我们把它平均分割,再拼合就变成了一个近似的平行四边形。我们还可以往下继续分割,无限分割就变成了一个长方形。长方形的长相当于圆周长的一半,可以用πr表示,长方形的宽就当于圆的半径,用r表示。所以用周长的一半×半径就可以求出圆的面积,所以推导出圆的面积公式是s=πr。

3.课件出示一个圆柱体

我们把圆转化成了近似的长方形,同学们猜想一下圆柱可以转化成什么图形呢?

二、探索体验

1.学生猜想可以把圆柱转化成什么图形?

2.课件演示:把圆柱体转化成长方体

①是怎样拼成的?

②观察是不是标准的长方体?

③演示32等份、64等份拼成的长方体,比较一下发现了什么?引出课题并板书。

3.借鉴圆的面积公式的推导过程试着推导圆柱的体积公式。

课件出示要求:

①拼成的长方体与原来的圆柱体比较什么变了?什么没变?

②推导出圆柱体的体积公式。

学生结合老师提出的问题自己试着推导。

4.交流展示

小组讨论,交流汇报。

生汇报师结合讲解板书。

圆柱体积=底面积×高

‖ ‖ ‖

长方体体积=底面积×高

用字母公式怎样表示呢? v、s、h各表示什么?

5.知道哪些条件可以求出圆柱的体积?

6.计算下面圆柱的体积。

①底面积24平方厘米,高12厘米

②底面半径2厘米,高5厘米

③直径10厘米,高4厘米

④周长18.84厘米,高12厘米

三、课堂检测

1.判断

①圆柱体、长方体和正方体的体积都可以用底面积乘高的方法来计算。( )

②圆柱的底面积扩大3倍,体积也扩大3倍。( )

③一个长方体与一个圆柱体底面积相等,高也相等,那么它们的体积也相等。( )

④圆柱体的底面直径和高可以相等。( )

⑤两个圆柱体的底面积相等,体积也一定相等。( )

⑥一个圆柱形的水桶能装水15升,我们就说水桶的体积是15立方分米。( )

2.联系生活实际解决实际问题。

下面的这个杯子能不能装下这袋奶?

(杯子的数据从里面量得到直径8cm,高10cm;牛奶498ml)

学生独立思考回答后自己做在练习本上。

3.一个压路机的前轮是圆柱形,轮宽2米,半径1米,它的体积是多少立方米?

4.生活中的数学

一个用塑料薄膜盖的蔬菜大棚,长15米,横截面是一个半径2米的半圆。

①覆盖在这个大棚上的塑料薄膜约有多少平方米?

②大棚内的空间大约有多大?

独立思考后小组讨论,两生板演。

四、全课总结

这节课你有什么收获?

五、课后延伸

如果要测量圆柱形柱子的体积,测量哪些数据比较方便?试一试吧?

六、板书设计

圆柱体积= 底面积×高

长方体体积=底面积×高

教学反思

数学学习过程充满着观察、实验、模拟、推断等探索性与挑战性活动,因此,动手实践、自主探究、合作交流是《课程标准》所倡导的数学学习的主要方式。在本节课提示课题后,我先引导学生独立思考要解决圆柱的体积问题,可以怎么办?学生通过思考很快确定打算把圆柱转化成长方体。那么怎样来切割呢?此时采用小组讨论交流的形式。同学们有了圆面积计算公式推导的经验,经过讨论得出:把圆柱的底面沿直径分成若干等份。在此基础上,小组拿出学具进行了动手操作,拼成了一个近似的长方体。同学们在操作、比较中,围绕圆柱体和长方体之间的联系,抽象出圆柱体的体积公式。这个过程,学生从形象具体的知识形成过程(想象、操作、演示)中,认识得以升华(较抽象的认识——公式)。

圆柱体积教案篇6

教学目标

1.使学生理解和掌握圆柱的体积计算公式,能运用公式计算圆柱的体积、容积,解决一些简单的实际问题。

2.渗透极限思想,发展学生的空间观念。

3、培养学生仔细计算的良好习惯。

重难点

1、圆柱体体积的计算

2、圆柱体体积公式的推导

教学过程

一、复习导入

1.解答下面各题

(1)圆的半径是2厘米。圆的面积是多少平方厘米?

(2)一个长方体,底面积是20平方米,高是2米,体积是多少?

2.导入

我们以前学过了长方体、立方体的体积的计算方法,都可以用公式v=sh进行计算,圆柱体的体积又该怎样计算呢?这节课我们一起来研究圆柱体体积的计算方法。(揭示课题)

二、探索新知

1.公式推导

(1)自学课本,初步感知圆柱是怎样转化成长方体的,让学生去发现两柱体之间的联系。

(2)操作研讨:演示操作,讨论:拼成的长方体跟圆柱体有什么异同点?

异:长方体变成圆柱体。同:体积、底面积、高都相同。

(3)比较归纳

在自学、操作、观察、讨论的基础上得出:

圆柱体体积=圆柱底面积圆柱的高

v=sh

2.公式应用

(1)例1.读题,学生独立解答,板演、反馈,说说列式依据与应注意的`问题。(单位)

类似题练习:

书本试一试和练一练

请同学板演计算的过程,并说明列式的依据.同学之间评.

(3).深入练习,书本第5题.

(4)实际应用:

测量生活中常见圆柱物体:茶叶罐、搪瓷杯,学生自由选择。量底面直径和高,并计算它的体积.

三、课堂总结

回顾学习全过程,知道求圆柱体积所需要的条件。质疑问难。

四、布置作业

作业本一面。

圆柱体积教案精选6篇相关文章:

小手歌教案精选6篇

绘本教案精选6篇

小班幼儿语言教案精选6篇

元宵节教案精选6篇

迎新年活动教案精选6篇

幼儿中班的教案精选6篇

音乐《蚂蚁》教案精选6篇

大班野猫的城市教案精选6篇

猪的美术教案精选6篇

小小班活动教案精选6篇

圆柱体积教案精选6篇
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
点击下载本文文档
131846