2024初中数学教案推荐8篇

时间:
Anonyme
分享
下载本文

教案能够帮助教师评估学生的学习情况,及时调整教学策略,保证教学的有效性,通过一份教案,教师能够有序地安排教学步骤,使教学过程更加顺畅和连贯,下面是美篇六六网小编为您分享的2024初中数学教案推荐8篇,感谢您的参阅。

2024初中数学教案推荐8篇

2024初中数学教案篇1

一、教学目标

?知识与技能】

了解运用公式法分解因式的意义,会用平方差分解因式;知道提公因式法分解因式是首先考虑的方法,再考虑用平方差分解因式。

?过程与方法】

通过对平方差特点的辨析,培养观察、分析能力,训练对平方差公式的应用能力。

?情感态度价值观】

在逆用乘法公式的过程中,培养逆向思维能力,在分解因式时了解换元的思想方法。

二、教学重难点

?教学重点】

运用平方差公式分解因式。

?教学难点】

灵活运用公式法或已经学过的.提公因式法分解因式;正确判断因式分解的彻底性。

三、教学过程

(一)引入新课

我们学习了因式分解的定义,还学习了提公因式法分解因式。如果一个多项式的各项,不具备相同的因式,是否就不能分解因式了呢?当然不是,大家知道因式分解与多项式乘法是互逆关系,能否利用这种关系找到新的因式分解的方法呢?

大家先观察下列式子:

(1)(x+5)(x-5)=,(2)(3x+y)(3x-y)=,(3)(1+3a)(1-13a)=

他们有什么共同的特点?你可以得出什么结论?

(二)探索新知

学生独立思考或者与同桌讨论。

引导学生得出:①有两项组成,②两项的符号相反,③两项都可以写成数或式的平方的形式。

提问1:能否用语言以及数学公式将其特征表述出来?

2024初中数学教案篇2

教学目标

(一)知识认知要求

1、回顾收集数据的方式、

2、回顾收集数据时,如何保证样本的代表性、

3、回顾频率、频数的概念及计算方法、

4、回顾刻画数据波动的统计量:极差、方差、标准差的概念及计算公式、

5、能利用计算器或计算机求一组数据的算术平均数、

(二)能力训练要求

1、熟练掌握本章的知识网络结构、

2、经历数据的收集与处理的过程,发展初步的统计意识和数据处理能力、

3、经历调查、统计等活动,在活动中发 展学生解决问题的能力、

(三)情感与价值观要求

1、通过对本章内容的回顾与思考,发展学 生用数学的意识、

2、在活动中培养学生团队精神、

教学重点

1、建立本章的知识框架图、

2、体会收集数据的方式,保证样本的代表性,频率、频数及刻画数据离散程度的统 计量在实际情境中的意义和应用、

教学难点

收集数据的方式、抽样时保证样本的代表性、频率、频数、刻画数据离散程度的统计量在不同情境中的应用、

教学过程

一、导入新课

本章的内容已全部学完、现在如何让你调查一个情况、并且根据你获得数据,分析整理,然后写出调查报告,我想大家现在心里应该有数、

例如,我们要调查一下“上网吧的人的年龄”这一情况,我们应如何操作?

先选择调查方式,当然这个调查应采用抽样调查的方式,因为我们不可能调查到所有上网吧的人,何况也没有必要、

同学们感兴趣的话,下去以后可以以小组为单位,选择自己感兴趣的事情做调查,然后再作统计分析,然后把调查结果汇报上来,我们可以比一比,哪一个组表现最好?

二、讲授新课

1、举例说明收集数据的方式主要有哪几种类型、

2、抽样调查时,如何保证样本的代表性?举例说明、

3、举出与频数、频率有关的几个生活实例?

4、刻画数据波动的统计量有 哪些?它们有什么作用?举例说明、

针对上面的几个问题,同学们先独 立思考,然后可在小组内交流你的想法,然后我们每组选出代表来回答、

(教师可参与到学生的讨论中,发现同学们前面知识掌握不好的地方,及时补上)、

收集数据的方式有两种类型:普查和抽样调查、

例如:调查我校八年级同学每天做家庭作业的时间,我们就可以用普查的形式、

在这次调查中,总体:我校八年级全体学生每天做家庭作业的时间;个体:我校八年级每个学生每天做家庭作业的时间、

用普查的方式可以直接获得总体情况、但有时总体中个体数目太多,普查的工作量较大;有时受客观条件的限制,无法对所有个体进行普查;有时调查具有破坏性,不允许普查,此时可用抽样调查、

例如把上面问题改成“调查全国八年级同学每天做家庭作业的时间”,由于个体数目太多,普查的工作量也较大,此时就采取抽样调查,从总体中抽取一个样本,通过样本的特征数字来估计总体,例如平均数、中位数、众数 、极差、方差等、

上面我们回顾了为了了解某种情况而采取的调查方式:普查和抽样调查,但抽样调查必须保证数据具有代表性,因为只 有这样,你抽取的样本才能体现出总体的情况,不然,就会失去可靠性和准确性、

例如对我们班里某门学科的成绩情况,有时不仅知道平均成绩,还要知道90分以上占多少,80到90分之间占多少,……,不及格的占多少等,这时,我们只要看一下每个学生的成绩落在哪一个分数段,落在这个分数段的分数有几个,表明数据落在这个小组的频数就是多少,数据落在这个小组的频率就是频数与数据总个数的商、

刻画数据波动的统计量有极差、方差、标准差、它们是用来描述一组数据的稳定性的、一般而言,一组数据的极差、方差或标准差越小,这组数据就越稳定、

例如:某农科所在8个试验点,对甲、乙两种玉米进行对比试验,这两种玉米在各试验点的亩产量如下(单位:千克)

甲:450 460 450 430 450 460 440 460

乙:440 470 460 440 430 450 470 4 40

在这个试验点甲、乙两种玉米哪一种产量比较稳定?

我们可以算极差、甲种玉米极差为460-430=30千克;乙种玉米极差为470-430=40千克、所以甲种玉米较稳定、

还可以用方差来比较哪一种玉米稳定、

s甲2=100,s乙2=200、

s甲2<s乙2,所以甲种玉米的产量较稳定、

三、建立知识框架图

通 过刚才的几个问题回顾思考了我们这一章的重点内容,下面构建本章的知识结构图、

四、随堂练习

例1一家电脑生产厂家在某城市三个经销本厂产品的大商场调查,产品的销量占这三个 大商场同类产品销量的40%、由此在广告中宣传,他们的产品在国内同类产品的销售量占40%、请你根据所学的统计知识,判断该宣传中的数据是否可靠:________,理由是________、

分析:这是一道判断说理型题,它要求借助于统计知识,作出科学的判断, 同时运 用统计原理给予准确的解释、因此,该电脑生产厂家凭借挑选某城市经销本产品情况,断然说他们的产品在国内同类产品的.销量占40%,宣传中的数据是不可靠的,其理由有二:第一,所取样本容量太小;第二,样本抽取缺乏代表性和广泛性、

例2在举国上下众志成城抗击“非典” 的斗争中,疫情变化牵动着全国人民的心 、请根据下面的疫情统计图表回答问题:

(1)图10是5月11日至5月29日全国疫情每天新增数据统计走势图,观察后回答:

①每天新增确诊病例与新增疑似病例人数之和超过100人的天数共有__________天;

②在本题的统计中,新增确诊病例的人数的中位数是___________;

③本题在对新增确诊病例的统计中,样本是__________,样本容量是__________、

(2)下表是我国一段时间内全国确诊病例每天新增的人数与天数的频率统计表、(按人数分组)

①100人以下的分组组距是________;

②填写本统计表中未完成的空格;

③在统计的这段时期中,每天新增确诊

病例人数在80人以下的天数共有_________天、

解:(1)①7 ②26 ③5月11日至29日每天新增确诊病例人数 19

(2)①10人 ②11 40 0、125 0、325 ③25

五.课时小结

这节课我们通过回顾与思考这一章的重点内容,共同建立的知识框架图,并进一步用统计的思想和知识解决问题,作出决策、

六.课后作业:

七.活动与探究

从鱼塘捕得同时放养的草鱼240尾,从中任选9尾,称得每尾鱼的质量分别是1、5,1、6,1、4,1、6,1、3,1、4,1、2,1、7,1、8(单位:千克)、依此估计这240尾鱼的总质量大约是

a、300克 b、360千克c、36千克 d、30千克

2024初中数学教案篇3

教学目标

1.经历不同的拼图方法验证公式的过程,在此过程中加深对因式分解、整式运算、面积等的认识。

2.通过验证过程中数与形的结合,体会数形结合的思想以及数学知识之间内在联系,每一部分知识并不是孤立的。

3.通过丰富有趣的拼图活动,经历观察、比较、拼图、计算、推理交流等过程,发展空间观念和有条理地思考和表达的能力,获得一些研究问题与合作交流方法与经验。

4.通过获得成功的体验和克服困难的经历,增进数学学习的信心。通过丰富有趣拼的图活动增强对数学学习的兴趣。

重点1.通过综合运用已有知识解决问题的过程,加深对因式分解、整式运算、面积等的认识。

2.通过拼图验证公式的过程,使学习获得一些研究问题与合作交流的方法与经验。

难点利用数形结合的方法验证公式

教学方法动手操作,合作探究课型新授课教具投影仪

教师活动学生活动

情景设置:

你已知道的关于验证公式的拼图方法有哪些?(教师在此给予学生独立思考和讨论的时间,让学生回想前面拼图。)

新课讲解:

把几个图形拼成一个新的图形,再通过图形面积的计算,常常可以得到一些有用的式子。美国第二十任总统伽菲尔德就由这个图(由两个边长分别为a、b、c的直角三角形和一个两条直角边都是c的直角三角形拼成一个新的图形)得出:c2=a2+b2他的证法在数学史上被传为佳话。他是这样分析的,如图所示:

教师接着在介绍教材第94页例题的拼法及相关公式

提问:还能通过怎样拼图来解决以下问题

(1)任意选取若干块这样的硬纸片,尝试拼成一个长方形,计算它的面积,并写出相应的`等式;

(2)任意写出一个关于a、b的二次三项式,如a2+4ab+3b2

试用拼一个长方形的方法,把这个二次三项式因式分解。

这个问题要给予学生充足的时间和空间进行讨论和拼图,教师在这要引导适度,不要限制学生思维,同时鼓励学生在拼图过程中进行交流合作

了解学生拼图的情况及利用自己的拼图验证的情况。教师在巡视过程中,及时指导,并让学生展示自己的拼图及让学生讲解验证公式的方法,并根据不同学生的不同状况给予适当的引导,引导学生整理结论。

小结:

从这节课中你有哪些收获?

(教师应给予学生充分的时间鼓励学生畅所欲言,只要是学生的感受和想法,教师要多鼓励、多肯定。最后,教师要对学生所说的进行全面的总结。)

学生回答

a(b+c+d)=ab+ac+ad

(a+b)(c+d)=ac+ad+bc+bd

(a+b)2=a2+2ab+b2

学生拿出准备好的硬纸板制作

给学生充分的时间进行拼图、思考、交流经验,对于有困难的学生教师要给予适当引导。

作业第95页第3题

板书设计

复习例1板演

………………

………………

……例2……

………………

………………

教学后记

2024初中数学教案篇4

一、教学目标

知识与技能目标

1.初步了解作函数图象的一般步骤;

2.能熟练作出一次函数的图象,掌握一次函数及其图象的简单性质;

3.初步了解函数表达式与图象之间的关系。

过程与方法目标

经历作图过程中由一般到特殊方法的转变过程,让学生体会研究问题的基本方法。

情感与态度目标

1.在作图的过程中,体会数学的美;

2.经历作图过程,培养学生尊重科学,实事求是的作风。

二、教材分析

本节课是在学习了一次函数解析式的基础上,从图象这个角度对一次函数进行近一步的研究。教材先介绍了作函数图象的一般方法:列表、描点、连线法,再进一步总结出作一次函数图象的特殊方法??两点连线法。结合一次函数的图象,教材以议一议的方式,引导学生探索函数解析式与图象二者间的关系,为进一步学习图象及性质奠定了基础。

教学重点:了解作函数图象的一般步骤,会熟练作出一次函数图象。

教学难点:一次函数及图象之间的对应关系。

三、学情分析

函数的图象的概念及作法对学生而言都是较为陌生的。教材从作函数图象的一般步骤开始介绍,得出一次函数图象是条直线。在此基础上介绍用两点连线得一次函数的图象,学生就容易接受了。在函数解析式与图象二者之间的探讨这部分内容上,不要作更高要求,学生能回答书中的问题就可以了。教学中尽可能的多作几个一次函数的图象,让学生直观感受到一次函数的图象是条直线。

四、教学流程

一、复习引入

下图是小红某天内体温变化情况的曲线图。你知道这幅图是怎样作出来的吗?把每个时间与其对应的体温分别作为点的横坐标和纵坐标,在直角坐标系中描出这些点,这样就可以作出这个图象。

二、新课讲解

把一个函数的自变量和对应的因变量的值分别作为点的横坐标和纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。

下面我们来作一次函数y = x+1的图象

分析:根据定义,需要在直角坐标系中描出许多点,因此我们应先计算这些点的横、纵坐标,即x与对应的y的值。我们可借助一个表格来列出每一对x,y的值。因为一次函数的自变量x可以取一切实数,所以x一般在0附近取值。

解:列表:

描点:以表中各组对应值作为点的坐标,在直角坐标系内描出相应的点。

连线:把这些点依次连接起来,得到y = x+1图象(如图)它是一条直线。

三、做一做

(1)仿照上例,作出一次函数y= ?2x+5的图象。

师:回顾刚才的作图过程,经历了几个步骤?

生:经历了列表、描点、连线这三个步骤。

师:回答得很好。作函数图象的一般步骤是列表、描点、连线。今后我们可以用这个方法去作出更多函数的图象。

师:从刚才同学们作出的一次函数的图象中我们可以观察到一次函数图象是一条直线。

(2)在所作的图象上取几个点,找出它们的横、纵坐标,验证它们是否都满足关系:y= ?2x+5

四、议一议

(1)满足关系式y= ?2x+5的x 、 y所对应的点(x,y)都在一次函数y= ?2x+5的'图象上吗?

(2)一次函数y= ?2x+5的图象上的点(x,y)都满足关系式y= ?2x+5吗?

(3)一次函数y=kx+b的图象有什么特点?

一次函数y=kx+b的图象是一条直线,因此作一次函数的图象时,只要确定两个点,再过这两个点作直线就可以了。一次函数y=kx+b的图象也称为直线y=kx+b

例1做出下列函数的图象

教师点评:作一次函数图象时,通常选取的两点比较特殊,即为一次函数和x轴、 y轴的交点,在列表计算时,分别令x=0,y=0就可计算出这两点的坐标。正比例函数当x=0时,y=0,即与x 、 y铀的交点重合于原点。因此做正比例函数的图象时,只需再任取一点,过它与坐标原点作一条直线即可得到正比例函数的图象。从而正比例函数y=kx的图象是经过原点(0,0)的一条直线。

练一练:作出下列函数的图象:

(1)y= ?5x+2,???? (2)y= ?x

(3)y=2x?1,(4)y=5x

五、课堂小结

这节课我们学习了一次函数的图象。一次函数的图象是一条直线,正比例函数的图象是经过原点的一条直线。在作图时,只需确定直线上两点的位置,就可得到一次函数的图象。一般地,作函数图象的三个步骤是:列表、描点、连线。

六、课后练习

随堂练习习题6.3

五、教学反思

本节课主要介绍作函数图象的一般方法,通过对一次函数图象的认识,得到作一次函数及正比例函数的图象的特殊方法(两点确定一条直线)。让学生能够迅速找到直线与坐标轴的交点,这是本节课的难点。数形结合,找准这两个特殊点坐标的特点(x=0或y=0),让学生理解的记忆才能收到较好的效果。

2024初中数学教案篇5

教学目标:

1、知识与技能:通过对多种实际问题的分析,感受方程作为刻画现实世界有效模型的意义。

2、过程与方法:通过观察,归纳一元一次方程的概念。

3、情感与态度:体验数学与日常生活密切相关,认识到许多实际问题可以用数学方法解决。

教学重点:归纳一元次方程的概念

教学难点:感受方程作为刻画现实世界有效模型的意义.

教学过程:

一、情景导入:

我能猜出你们的年龄,相信吗?

只要任何一个同学回答我一个问题,我就能马上猜到他的年龄是多少岁,我们来试试吧.

问:你的年龄乘以2加3等于多少?

学生说出结果,教师猜测年龄,并问:你们知道我是怎么做的吗?

学生讨论并回答

二、知识探究:

1、方程的教学(投影演示)

小彬和小明也在进行猜年龄游戏,我们来看一看。

找出这道题中的等量关系,列出方程.

大家观察,这两个式子有什么特点。

讨论并回答:什么是方程?方程有哪些特点?

2、 判断下列式子是不是方程?

(1)x+2=3(是)(2)x+3y=6(是)

(3)3m-6(不是)(4)1+2=3(不是)

(5)x+3>5(不是)(6)y-12=5(是)

三、合作交流

1、如果告诉我们一些实际生活中的问题,大家能够自己列出方程吗?(投影演示)

情景一:小颖种了一株树苗,开始时树苗高为40厘米,栽种后每周树苗长高约15厘米,大约几周后树苗长高到1米?

你能找出题中的等量关系吗?怎样列方程?由此题你们想到了些什么?

情景二:第五次全国人口普查统计数据(20xx年3月28日新华社公布)

截至20xx年11月1日0时,全国每10万人中具有大学文化程度的人数为3611人,比1990年7月1日0时增长了153.94%

1990年6月底每10万人中约有多少人具有大学文化程度?情景三:西湖中学的体育场的足球场,其周长为200米,长和宽之差为12米,这个足球场的长和宽分别是多少米?

下面是刚才根据几道情景题所列的方程,分析下列方程有何共同点?

2x–5=21

40+15x=100

x(1+153.94﹪)=3611

2[x+(x+12)]=200

2[y+(y–12)]=200

在一个方程中,只含有一个未知数x(元),并且未知数的指数是1(次),这样的方程叫一元一次方程。

问:大家刚才都已经自己列出了方程,那个同学能够说一下你是怎样列出方程的,列方程应该分为那几步呢?

生:分组讨论,回答列方程的步骤(1)找等量关系(2)设未知数(3)列方程

四、随堂练习

1、投影趣味习题,

2、做一做

下面有两道题,请选做一题。

(1)、请根据方程2x+3=21自己设计一道有实际背景的应用题。

(2)、发挥你的想象,用自己的年龄编一道应用题,并列出方程。

五、课堂小节

1、这节课你学到了什么?

2、这节课给你印象最深的`是什么?

六、作业:分组布置

数学教案-你今年几岁了搜集整理

2024初中数学教案篇6

教学目标:

了解总体、个体、样本及样本容的概念以及抽样调查的意义,明确在什么情况下采用抽样调查或全面调查,进一步熟悉对数据的收集、整理、描述和分析。

教学重点:

对概念的理解及对数据收集整理。

教学难点:

总体概念的理解和随机抽样的合理性。

教学过程:

一、情景创设,引入新课

上节课我们对全班同学对自己所喜爱的学科进行了调查,那么如果要对某校20xx名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,怎样进行调查?

二、新课

1.抽样调查的意义

在上述问题中,由于学生人数比较多,全面调查花费的时间长,消耗的人力、物力大,因此需要寻求既省时又省力又能解决问题的方法,这就是抽样调查。

抽样调查:抽取一部分对象进行调查的方法,叫抽样调查。

2.总体、个体、样本、样本容量的意义

总体:所要考察对象的全体。

个体:总体的每一个考察对象叫个体。

样本:抽取的部分个体叫做一个样本。

样本容量:样本中个体的`数目。

3.抽样的注意事项

①抽样调查要具有广泛性和代表性,即样本容量要恰当,样本容量过少,那么不能很好地反映总体的情况,比如要调查20xx名学生对电视节目的喜爱情况,若抽取的样本容量为几名学生就不能反映2000名学生的喜爱情况;如果抽取的学生人数过多,必然花费大量的时间、精力,达不到省时省力的目的,再如要调查60岁以上的老人的生病情况,在医院去抽取一些60岁以上的住院病人,它又不具有代表性,则应从60岁以上的老人册中任意抽取部分老人的生病情况来反映总体的60岁老人的生病情况,才能达到目的。

②抽取的样本要有随机性,为了使样本能较好地反映总体的情况,除了有合适的样本容量外,抽取时还要尽量使每一个个体都有相等的机会被抽到,所谓随机就是机会相等,例如在2000名学生的注册学号中,随意抽取100个学号,调查这些学号对应的100名学生.当然还可以在上学或放学时,在学校门口随机进行调查;或则每隔10个人调查一个,直到调查满确定的样本容量。

总体说来抽样调查最大的优点就是在抽样过程中避免了人为的干扰和偏差,因此随机抽样是最科学、应用最广泛的抽样方法,一般情况下,样本容量越大,估计精确度就越高。

下面是某同学抽取样本数量为100的调查节目统计表:

表中的数据信息也可以用条形统计图或扇形统计图来描述。

2024初中数学教案篇7

教学目标:

知识与技能:会用计算器进行数的加、减、乘、除、乘方运算。

过程与方法:了解计算器的性能,并会操作和使用,能运用计算器进行较为复杂的运算。

情感态度与价值观:使学生能运用计算器探索一些有趣的数学规律。

教学重点:用计算器进行数的加、减、乘、除、乘方的运算。

教学难点:能用计算器进行数的乘方的运算。

教材分析:在日常生活中,经常会出现一些较为复杂的混合运算,这就要求使用科学计算器。因此,使学生会用计算器进行数加、减、乘、除、乘方的运算就成为本节的重点和难 点。

教学方法:师生互动法。

课时安排:1课时。

教具:powerpoint幻灯片、科学计算器。

环节 教 师 活 动 学 生 活 动 设 计 意 图

创设情境 一、从问题情境入手,揭示课题。

(出示幻灯一)

在棋盘上放米,第一格放1粒米,第二格放2粒米,第三格放22粒米,然后是23粒、24粒、25粒……一直到64格,你能计算第64格应放多少粒米?有简单的计算方法吗

教师对学生的回答给予点评,并带着问题引入本节课题:

板书:3.4 用计算器进行数的计算 在教师的引导下,学生仔细观察、思考,积极回答。 通过师生的相互探讨,使学生认识到学会使用计算器的必要性,并激发学生的 求知欲。

探究活动一 一、 介绍计算器的使用方法。

(出示幻灯二)

B型计算器的面板示意图如下:

教师结合示意图介绍按键的使用方法。

学生根据教师的介绍,使用计算器进行实际操作。 通过训练,使学生掌握计算器 的按键操作,熟悉计算器的程序设计模式。

探究活动二 二、用计算器进行加、减、乘、除、乘方运算

(出示幻灯三)

例1 用计算器求下列各式的值

(1)(-3.75)+(-22.5)

(2)51.7(-7.2)

解:(1)

(-3.75)+(-22.5)=-26.25

学生相互交流,并用计算器进行实际操作。 通过计算,使学生熟悉计算器的用法。

探究活动二 (2)

51.7(-7.2)=-372.24

学生相互交流,并用计算器进行实际操作。

通过计算,使学生会用计算器进行有理数的加、减、乘、除运算。

探究活动二 例2 用计算器计算(精确到0.001)

(-0.45)5

(-0.45)5-0.018

相互讨论,并进行实际操作。 通过计算,使学生会用计算器进行有理数的乘方运算。

探究活动二

例3 用计算器求值

(1)(-6)2(2)-62

解:

思考:

注意观察它们的按键顺序有什么不同?

学生认真观察、讨论,得出结论。

通过对比,使学生能区分两种按键的不同,灵活运用计算器进行计算。

探究活动三 三、随堂练习

(出示幻灯四)

用计算器求值

1.9.23+10.2

2 . (-2.35)(-0.46)

3.( -3.45)3

4.-2.082

学生独立操作完成。 通过训练,使学生能熟练地用计算器进行数的运算。

探究活动四 四、实际应用,能力提高。

1.用计算器解决“创设情境”中提出的问题。

(出示幻灯五)

2.张老师在银行贷月息为0.456%的住房 贷款50 000元,满5年时共需付款50 000(1+600.456%)元,其中包括贷款本金和贷款利息。张老师共需付利息多少元? 在教师的引导下,分组讨论,互相交流,回答有关的信息,学生互评。 通过实际应用,进一步提高学生运用计算器解决实际问题的能力。

学习总结 五、学习总结

这节课你有哪些收获?有什么体会?

教师简要点评:

(1)由于受计算器显示数位的限制,计算结果是一个近似数。

(2)当计算结果很大时,计算器能将计算结果自动转化为科学记数法的。形式来显示。

学生相互交流自己的 收获和体会,教师参与互动并给予鼓励 性的评价。 学生自由发表学习心得,能锻炼学生的语言表达能力和归纳概括能力。

课堂反馈

1.用计算器进行计算(略)

2.(1)用计算器计算下列各式:

1111,111111,1 1111 111,11 11111 111 。

(2)根据 (1)的计算结果,你发现了什么规律?

(3)如果不用计算器,你能直接写出1 111 1111 111 1 11的结果吗? 让学生熟练运用计算器进行操作,学以致用。 及时反馈,并使学生能运用计算器探究一些有趣的数学规律。

附:板书设计:

3.4用计算器进行数的计算

1.介绍计算器的使用方法;

2.运用计算器进行数的运算;

3.运用计算器探究数学规律。

教学反思:

1.只停留在powerpoint的使用上,有一定的局限性,如能演示使用计算器的方法,效果会更好。

2.更新教学观念,最好以学生自学使用计算器的方法为主,使学生主动参与探索,培养学生的创新精神。

3.教师主导课堂,忽视学生的学习主体作用,不利于创新思维及个性化发展。而通过网络或多媒体的教学过程中,往往易忽视教师的作用,过分的 依赖于学习者的主观能动性,教学成本也大幅度提高。

2024初中数学教案篇8

教学建议

一、知识结构

二、重点难点分析

本节教学的重点是同位角、内错角、同旁内角的概念、难点为在较复杂的图形中辨认同位角、内错角、同旁内角、掌握同位角、内错角、同旁内角的相关概念是进一步学习平行线、四边形等后续知识的基础、

(1)两条直线被第三条直线所截,构成八个角(简称“三线八角”),其中同位角4对,内错角2对,同旁内角2对、

(2)准确识别同位角、内错角、同旁内角的关键,是弄清哪两条直线被哪一条线所截、也就是说,在辨别这些角之前,要弄清哪一条直线是截线,哪两条直线是被截线、

(3)在截线的同旁找同位角和同旁内角,在截线的两旁找内错角、要结合图形,熟记同位角、内错角、同旁内角的位置特点,比较它们的区别与联系、

(4)在复杂的图形中识别同位角、内错角、同旁内角时,应当沿着角的边将图形补全,或者把多余的线暂时略去,找到三线八角的基本图形,进而确定这两个角的位置关系、

三、教法建议

1、上节课讨论了两条直线相交以后所形成的四个角,这一节课是进一步讨论三条直线相交后所形成的八个角,所以在教课过程,要运用基本图形结构将所学的知识及其内在联系向学生展示、

2、在讲三线八角概念时,一定要细致地分析、顾名思义,把握住两个关键的环节,“三条线与一条线”,尽量给出变式的图形,让学生分辨清楚、

3、这节课虽然不涉及两条直线平行后被第三条直线所截的问题,但在可能的情况下,将平行线的图形让学生见到,对下一步的学习很有好处,例如,平行四形中的内错角,学生开始接受起来有一定困难,在这一课时中,出现这个基本图形,为以后学习打下基础、

教学设计示例

一、素质教育目标

(一)知识教学点

1、理解同位角、内错角、同旁内角的概念、

2、结合图形识别同位角、内错角、同旁内角、

(二)能力训练点

1、通过变式图形的识图训练,培养学生的识图能力、

2、通过例题口答“为什么”,培养学生的推理能力、

(三)德育渗透点

从复杂图形分解为基本图形的过程中,渗透化繁为简,化难为易的化归思想;从图形变化过程中,培养学生辩证唯物主义观点、

(四)美育渗透点

通过“三线八角”基本图形,使学生认识几何图形的位置美、

二、学法引导

1、教师教法:尝试指导,讨论评价、变式练习、回授、

2、学生学法:主动思考,相互研讨,自我归纳、

三、重点、难点、疑点及解决办法

(一)生点

同位角、内错角、同旁内角的概念、

(二)难点

在较复杂的图形中辨认同位角、内错角、同旁内角、

(三)疑点

正确理解新概念、

(四)解决办法

引导学生讨论归纳三类角的特征,并以练习加以巩固、

四、课时安排

1课时

一、教具学具准备

投影仪、三角板、自制胶片、

六、师生互动活动设计

1、通过一组练习创设情境,复习基础知识,引入新课、

2、通过学生阅读书本,教师设问引导,练习巩固讲授新课、

3、通过师生互答完成课堂小结、

七、教学步骤

(一)明确目标

使学生掌握“三线八角”,并能在图形中进行辨识、

(二)整体感知

以复习旧知创设情境引入课题,以指导阅读、设计问题、小组讨论学习新知,以变式练习巩固新知、

(三)教学过程

创设情境,复习导入

回答下列问题:

1、如图,∠1与∠3,∠2与∠4是什么角?它们的大小有什么关系?

2、如图,∠1与∠2,∠l与∠4是什么角?它们有什么关系?

3、如图,三条直线 ab 、cd 、ef 交于一点 o ,则图中有几对对顶角,有几对邻补角?

4、如图,三条直线 ab 、cd 、ef 两两相交,则图中有几对对项角,有几对邻补角?

5、三条直线相交除上述两种情况外,还有其他相交的情形吗?

学生答后,教师出示复合投影片1,在(1、2题的)图上添加一条直线 cd ,使 cd 与ef相交于某一点(如图),直线 ab 、cd 都与ef相交或者说两条直线 ab 、cd 被第三条直线ef所截,这样图中就构成八个角,在这八个角中,有公共顶点的两个角的关系前面已经学过,今天,我们来研究那些没有公共顶点的两个角的关系、

?板书】 2.3同位角、内错角、同旁内角

?教法说明】通过复合投影片演示了同位角、内错角、同旁内角的产生过程,并从演示过程中看到,这些角也是与相交线有关系的角,两条直线被第三条直线所截,是相交线的又一种情况、认识事物间是发展变化的辩证关系、

尝试指导,学习新知

1、学生自己尝试学习,阅读课本第67页例题前的.内容、

2、设计以下问题,帮助学生正确理解概念、

(1)同位角:∠4和∠8与截线及两条被截直线在位置上有什么特点?图中还有其他同位角吗?

(2)内错角:∠3和∠5与截线及两条被截直线在位置上有什么特点?图中还有其他内错角吗?

(3)同旁内角:∠4和∠5与截线及两条被截直线在位置上有什么特点?图中还有其他同分内角吗?

(4)同位角和同分内角在位置上有什么相同点和不同点?

内错角和同旁内角在位置上有什么相同点和不同点?

(5)这三类角的共同特征是什么?

3、对上述问题以小组为单位展开讨论,然后学生间互相评议、

4、教师对学生讨论过程中所发表的意见进行评判,归纳总结、

在截线的同旁找同位角和同旁内角,在截线的不同旁找内错角,因此在“三线八角”的图形中的主线是截线,抓住了截线,再利用图形结构特征( f 、z 、u )判断问题就迎刃而解、

?教法说明】让学生自己尝试学习,可以充分发挥学生的积极性、主动性和创造性,几个问题的设计目的是深化教学重点,使学生看书更具有针对性,避免盲目性、学生互相评价可以增加讨论的深度,教师最后评价可以统一学生的观点,学生在议议评评的过程中明理、增智,培养了能力、

投影显示(投影片2)

例题?如图,直线de、bc被直线ab所截,(1)∠l与∠2,∠1与∠3,∠1与∠4各是什么关系的角?

(2)如果∠1=∠4,那么∠1和∠2相等吗?∠1和∠3互补吗?为什么?

[教法说明]例题较简单,让学生口答,回答“为什么”只要求学生能用文字语言把主要根据说出来,讲明道理即可,不必太规范,等学习证明时再严格训练、

变式训练,巩固新知

投影显示(投影片3)

?教法说明】本题是对简单变式图形的训练,以培养学生的识图能力,第2题指明第三条直线是 c ,即 a 和 b 被 c 所截,如 c 和 a 被占所截,则结果截然不同,因此遇到题目先分清哪两条直线被哪一条直线所栽,这是解题的关键和前提、

投影显示(投影片4)

?教法说明】本组练习是由同位角、内错角和同旁内角找出构成它们的“三线”,或是由“三线八角”图形判断同位角、内错角、同旁内角、这两者都需要进行这样的三个步骤,一看角的顶点;二看角的边;三看角的方位、这“三看”又离不开主线——截线的确定,让学生知道:无论图形的位置怎样变动,图形多么复杂,都要以截线为主线(不变),去解决万变的图形,另外遇到较复杂的图形,也可以从分解图形入手,把复杂图形化为若干个基本图形、如第2题由已知条件结合所求部分,对各个小题分别分解图形如下:

投影显示(投影片5)

?教法说明】学生在较复杂的图形中,对找这一类的同位角,找这一类的内错角,找这一类的同旁内角有一定困难,为此安排本组选择题,有利于突破难点,第2题中学生对 c 、d 两个图形易混淆,要加强对比以便解决教学疑点。第3题让学生掌握三角形中的3对同旁内角。另外本组练习也为后面的练习打基础。

投影显示(投影片6)

?教法说明】本组题目是上组题的延伸,再次突破难点,提高学生思维的广度与深度、学生解决此类题常常因考虑不全面而丢解,要使学生养成全方位多角度考虑问题的习惯,第2题以裁线为标准分类求解,分别把 ab 、bd 、ef 看成是截线找三类角,这样既不遗漏又不重复、

(四)总结、扩展

1、本节研究了一条直线分别和两条直线相交,所得八个角的位置关系,掌握辨别这些角位置关系的关键是分清哪条线是截线,哪些线是被截直线,在截线的同旁找同位角和同旁内角,在截线的不同旁找内错角,只要抓住三线中的主线——截线,就能正确识别这三类角、

2、相交直线

3、教师指着图中的一条被截直线,问:“这条直线绕着与截线着与截线的交点旋转,当同位角相等时,两条被截直线是什么关系?”

?教法说明】将所学知识进行归纳总结,加强了知识问的联系,充分体现了所学知识的系统性,最后用是合式小结、可使学生课后自觉地去看预习,寻找答案。系统性,最后用悬念式小结,可使学生课后自觉地去看书预习,寻找答案。

八、布置作业

课本第72页b组第4题、

?教法说明】课本练习穿插在课堂练习中完成,故只留一道提高题,让学有余力的同学继续探究,提高学生思维广度

作业答案

4、答:(1)设 e 是 bc 延长线上的一点,∠ a 与∠ acd 、∠ ace 是内错角,它们分别是由直线 ab 、cd 被直线 ac 截成的和直线 ab 、be 被直线 ac 截成的。

(2)∠ b 与∠ dce 、∠ ace 是同位有,它们分别是由直线 ab 、cd 被直线 be 截成的和直线 ab 、ac 被直线 be 截成的。

2024初中数学教案推荐8篇相关文章:

初中生对党说心得体会推荐8篇

体育初中教案6篇

初中物理教案5篇

初中信息技术教案5篇

体育初中教案模板7篇

体育初中教案参考5篇

初中数学教师个人总结6篇

初中化学酸教案7篇

初中散步的教案5篇

初中数学教师反思教学反思6篇

2024初中数学教案推荐8篇
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
点击下载本文文档
85219