通过教案,教师能够将理论与实践相结合,提升教学的有效性,教案的实施,教师能够及时监控学生的学习进展,进行适当的调整,美篇六六网小编今天就为您带来了《分数乘法》教案优质6篇,相信一定会对你有所帮助。

《分数乘法》教案篇1
教学内容
先约分再计算结果的分数乘法
教材第5页的内容、练习一的第7~13题,第8页例5。
教学目标
1.通过学习,理解分数乘分数的计算法则也适用于分数和整数相乘,加深对分数乘法计算法则的理解。
2.进一步提高学生计算的准确性和灵活性。
3.培养学生良好的书写习惯。
重点难点
正确掌握分数和整数相乘的约分方法,灵活计算。
教具学具
口算卡,练习题投影片。
教学过程
一、导入
1.说出下面各算式的意义。
二、教学实施
1.揭示课题。
老师:我们已经会计算分数乘分数了,而整数也可以看作分母是1的假分数,所以我们也可以用分数乘分数的法则来计算分数乘整数的算式。
板书课题:分数乘整数的约分方法
2.出示例4。
(1)明确题意。
请学生读题,并找出已知条件和问题。
(2)理解题意。
少千米,用什么方法计算?为什么?
学生甲:应该用乘法计算。因为是在求一个数的几分之几是多少。
学生乙:已知速度和时间,求路程,用乘法计算。
老师:同学们从不同角度说明了这道题为什么用乘法计算,有的同学想到了分数乘法的意义,有的同学想到了“路程、速度和时间”这三者之间的关系,真的很棒。
学生互相交流,得出结论。
(3)计算。
提问:怎样计算更加简便?
明确:能约分的可以先约分再乘。
(5)分析错因。
提问:为什么第三种答案与其他两种不同呢?错在哪里?
学生自由发言。
追问:分数和整数相乘怎样约分?小结:因为整数都可以看作分母是1的分数,所以分数乘分数的法则也适用于分数乘整数。
3.巩固练习。
(1)完成教材第5页的“做一做”。
学生可以先说意义再计算,集体订正答案时,请学生说出计算方法。
(2)完成教材第6页练习一的第7题。
老师对掌握程度不同的学生可以有不同的要求,引导学生找出当一个数分别乘一个比1大的数、比1小的数和等于1的数时,积与第一个因数之间的大小关系。
(3)完成教材第6页练习一的第8~13题。
学生独立完成后,集体订正答案。
4.出示例5。
(1)明确题意。
请学生读题,并找出已知条件和问题。
(2)探究算法。
老师:我们已经学会分数乘分数、分数乘整数的计算方法,那么分数乘小数怎么算呢?
板书:分数乘小数的计算方法
学生1:可以把2.1转成分数进行计算。
三、课堂作业新设计
1.在○里填上“>”“
四、思维训练
1.先计算下面各题,说一说发现了什么规律。参考答案
(2)略
板书设计
分数乘整数的约分方法
分数乘分数的简便算法是先约分,后计算,计算结果必须是最简分数。
运用约分对分数乘分数进行简便运算时,约分后分子和分母必须只有公因数1,计算后的结果才是最简分数。
分数乘小数的计算方法。计算小数乘分数时,可以把小数转化成分数进行计算,即分子与分子相乘,分母与分母相乘,然后约分就可以了;也可以把分数化成小数,按照小数乘小数的计算方法进
行计算;在计算小数乘分数时,如果小数能和分数的分母约分,可以先约分再计算,这样可以使计算简便。
备课参考教材与学情分析
本部分内容主要教学分数乘法在乘的过程中的简便的书写格式。教材一方面把分数乘法的两种形式集中呈现,加强它们之间的对比和联系,一方面提出分数和整数相乘怎样约分的问题,让学生知道除了像例4那样进行约分,也可以把分数的分母与整数直接约分。这部分内容是在学生学过分数乘整数的基础上进行教学的,它是后面学习分数除法以及分数乘除法应用题的基础。
课堂设计说明
1.加强两种形式的乘法的对比练习。
学生已经理解了分数乘整数和分数乘分数的意义,通过对比练习可以找到两种形式的乘法之间的联系。
2.引导学生观察教材的约分过程,想一想与例2的约分形式有什么不同。特别要注意提醒学生要先观察能否约分,并且注意提醒他们不能把整数与分数的分子约分。
《分数乘法》教案篇2
教学内容:第45页例题4、5
教学目标:
1、使学生知道分数乘分数的计算法则也适用于整数和分数相乘,把分数乘法统一成一个法则。进一步巩固分数乘法的计算法则。
2、使学生经历解决问题的探索过程,进一步培养观察、比较、分析、推理的能力,体验数学学习的乐趣。
教学重点、难点:
分数乘分数的计算法则。
对策:
使学生经历解决问题的探索过程,进一步培养观察、比较、分析、推理的能力,体验数学学习的乐趣。
一、 复习
1、计算下列各式
1/15╳5= 2╳2/3 = 7/8 ╳14= 15/6 ╳24=
2、说说整数与分数相乘的计算方法?先约分再计算还是先计算再约分方便?
二、 新授
1、出示例题4题目和图。
2、理解题目意思。
3、你知道左边图中画斜线的部分占1/2的几分之几?是这张纸的几分之几?你是怎样想的?
4、右边呢?
5、你能看图用算式来表示结果吗?填在书上。组织交流。
6、总结:求一个分数的几分之几是多少,也可以用乘法计算。
7、探究:观察这两个算式,猜才分数与分数相乘是怎样计算的?
学生说出自己的猜想。
验证猜想,教学例题5。
(1)出示例题5
(2)在图中画斜线表示计算结果,再填空。
(3)组织交流:你发现积的分子、分母与两个因数的分子、分母各有什么关系?
(4)总结得出:分数与分数相乘,用分子相乘的积作分子,分母相乘的积作分母。
三、巩固
1、出示 13 84
2、学生独立完成,指名板演
3、可能出现两种:先乘再约分 或先约分再相乘
引导学生比较这两种方法谁更好?如果是248呢?再次体会到先约分再计算比较简便。
4、介绍简便书写格式,发现可以在算式上直接约分,再计算,提高速度。
四、比较
出示2/113和45/6,先计算,再比较,分数与分数相乘的计算方法适用于分数和整数相乘吗?为什么?
所以不管上分数乘整数还是分数,都可以看作是分数乘分数的计算方法来计算。
五、巩固提高
您现在正在阅读的苏教版《分数乘法》第四课时教学设计文章内容由收集!本站将为您提供更多的精品教学资源!苏教版《分数乘法》第四课时教学设计1、第46页上的练一练
先独立计算在书上,指名板演,再组织交流。
2、第48页上的第1题
读题先在图中表示出来,再列式计算。组织交流想法。
3、第48页上的第3题
先独立判断,将不对的改正过来。组织交流:是否正确?错在哪里?怎样改?最后是多少?
4、第48页上的第4题
先独立计算,再组织交流:上下两题有什么相同的地方?结果怎样?
六、布置作业: 练习九 2、5
课前思考:
教学例4和例5时,我想如果借助投影仪依次呈现长方形图,可能会对学生思考问题有帮助,特别是对于一些学习困难生来说,这样便于他们直观地看出所求部分占了这张纸的几分之几。当然,最后还是要让学生从直观图中抽象出本质的东西,即认识到分数与分数相乘的计算方法。
在试一试的教学中,要分三个层次进行。第一层次是计算分数乘分数时用先约分再计算的方法;第二层次尝试用分数乘分数的方法计算分数乘整数;第三层次学习直接在题中约分的方法来计算分数乘法。估计这么多的计算方法一下子呈现在学生面前,会使一部分学生不知所措。课中教师要多关注学生学习情况,及时调整教学行为。
课前思考:
例4的教学可分三步进行,第一,看图理解1/2的1/4和1/2的3/4表示的意义,联系图弄清分别是这张纸的几分之几。第二,进一步明确求1/2的1/4或1/2的3/4是多少,也可以用乘法。第三,前两步的思考过程完成教材上的填空,建立关于分数乘分数计算方法的初步猜想。
例5可以根据例4的猜想,算出算式的积,再通过画图验证。教学时让学生观察比较几个算式的因数和积,通过交流归纳出分数乘分数的计算方法。
在介绍简便书写格式,发现可以在算式上直接约分再计算,学生可能在整数乘分数时会把整数同分子约分,教学时要进行强调。
课后反思:
本节课在教学时,我借助直观的图形,不仅让学生掌握分数与分数相乘的计算方法,更重要的是让学生理解分数乘分数的含义。并在例题教学之后增加了一个画一画环节----(1)教师写一个分数乘分数的算式,让一个学生上黑板画图表示算式的意义,要求边画边说为什么怎样画;(2)再写一个分数乘分数的算式,让全体学生独立画图表示,再同桌交流,最后指名交流。这样学生对分数乘分数的意义有了更深的认识。
在第48页第4题练习时,加强了分数乘法与分数加法的对比,强化计算方法区别,防止学生对两种计算出现混淆。
课后反思:
反思本节课的教学,在例4的'教学中由于要借助直观图来思考1/2的1/4和1/2的3/4是这张纸的几分之几,所以忽略了指导学生理解1/2的1/4和1/2的3/4所表示的意义,这是今天这节课上的一处败笔。因为对于分数乘分数的计算方法的推导和理解、运用,对于学生来说反而不存在太大的问题。
从学生作业情况来看,遇到整数乘分数时,往往出现错误,分析原因是计算时不会把整数改写成分母是1的分母来计算,出现分子和分子约分的现象;还有些学生约分时仍存在错误,这样就造成乘法计算错误。
估计明天的课上计算分数连乘时问题会更多,教学时要思考对策。
课后反思:
通过教学,学生能理解分数乘分数的意义,掌握分数乘分数的计算方法,并通过学习分数乘分数的计算方法适用于分数与整数相乘,体会数学知识的内在联系,感受数学知识和方法的应用价值。
对于能约分的可以直接在题目上约,课堂上进行了讲解和示范,但在做作业时考虑到有部分学生约分时容易出错,我还是让学生写出了分母和分母相乘,分子和分子相乘的那一步,再约分,最后计算。从作业的反馈情况来看学生的计算的正确率也比较高
《分数乘法》教案篇3
教学目标:
1、使学生初步掌握分数乘法应用题的数量关系,学会应用一个数乘以分数的意义解答分数乘法一步应用题。
2、培养学生分析能力,发展学生思维。
教学重点:
理解题中的单位1和问题的关系。
教学难点:
抓住知识关键,正确、灵活判断单位1。
教具准备:
多媒体课件。
教学过程:
一、复习引入(激发兴趣,引入铺垫)
1、列式计算。
(1)20的 是多少?
(2)6的 是多少?
二、自主探究(自主学习,探讨问题)
1、教学例1。
出示例1:学校买来100千克白菜,吃了 ,吃了多少千克?
(1)指名读题,说出条件和问题。
(2)引导学生画出线段图,并在线段图上标出题目中的.条件和问题。
先画一条线段,表示100千克白菜。
吃了 ,吃了谁的 ?(100千克白菜)要把100千克白菜平均分成5份,吃了4份,怎样表示?
教师边说边画出下图
(3)分析数量关系,启发解题思路。
a.请同学们仔细观察图画,并认真想一想,吃了 ,是吃了哪个数量的 ?
b.分组讨论交流:依据吃了100千克的 把哪个量看作单位1呢?为什么?你是怎样想的?
(4)列式计算。
a.学生完整叙述解题思路。
b.学生列式计算,教师板书: (千克)
c.写出答话,教师板书:答:吃了80千克。
(5)总结思路。
根据以上分析,让学生讨论一下解题顺序:吃了 吃了谁的 谁是多少(已知)谁的 是多少乘法。
(6)反馈练习。(14页)1-3题,做完后订正。说一说你是怎样想的?
2、阅读课本:把书中的想的过程和线段图认真看一下,不懂提问。
三、拓展总结(应用拓展,盘点收获)
1、判断下面每组中的两个量,应该把谁看作单位1。
(1)乙是甲的 ,甲是乙的 。
(2)甲是乙的 ,乙是甲的 倍。
2、练习四1、2题,完成在练习本上,然后订正。
3、操作:画出体育小组的人数是美术小组的 倍的线段图自己补充条件和问题并解答。
《分数乘法》教案篇4
教学目标
抓住分数应用题的核心倍数关系和等量对应,通过一例多用、一题多变,把各类应用题构成一个整体,帮助学生从本质上理解分数应用题的数量关系,提高学生的分析能力和解题能力.
教学过程
一、引入
根据条件列出对应关系.
1.青砖的块数比红砖多
2.青砖的块数比红砖少
3.红砖的块数比青砖多
4.红砖的块数比青砖少
上面各题哪一个量是单位1的量,占几份?另一个量所对应的分率是什么,占几份?
二、展开
(一)将上列各条件补充一个共同的条件和问题,出示例1.
红砖2100块 有青砖多少块?
1.学生独立解答;
2.大组交流;
3.列表归纳.
(二)出示例2
电视机厂今年生产电视机3600台,____________________,去年生产多少台?
1.根据已知的一个条件和问题,对照下列含有分率的条件,找出相应的式子.
(1)相当于去年的25%
(2)比去年少25%
(3)比去年多25%
(4)去年生产的是今年的25%
(5)去年比今年少25%
(6)去年比今年多25%
2.将应选择的条件填入下列各式后的.括号内.
( )
( )
( )
( )
( )
( )
3.师生共同分析
(1)按照补充的条件,找相应的式子,如(1)相当于去年的25%.
分析:去年的生产量是单位1的量,占100份,今年的生产量相当于去年的25%,占25份,对应关系是:
去年的产量□100
今年的产量360025
设去年生产x台,得到的式子:
在第六个式子的括号里填(1).
(2)按照式子找应补充的条件.
如:
分析:100份与3600台相对应,也就是今年的生产量3600台是单位1的量,占100份,去年的生产量是未知数,比今年多25份,即去年比今年多25%.括号里应填(6).
三、巩固
(一)根据题意列式解答:
果园里有梨树168棵 苹果树有多少棵?
(二)机床厂现在制造一台机器的成本是1200元,比原来的成本降低25%.原来制造??
台机器要多少元?
(三)工厂去年生产换气扇6220台,今年比去年增产20%,今年计划生产多少台?
(四)某印染厂原来印花需要60人,制造自动印花机后,印花人数减少了40%,现在印花需要多少人?
教案点评
这节课所出现的分数两步应用题的四种类型,在通常情况下是在几节课中出现,采用一例一类题的教学方法。这样的教法,学生学起来似乎轻松一些,但对数量关系的理解往往不够深刻。这节课摆脱了常规的教学方法抓住了分数应用题的核心倍数关系和量率对应,采用了一例多用,一题多变的教学方法,把四种题型构成一个整体,把分数所表示的两个量的倍数关系作为教材的基本结构,揭示数量的具体和抽象的矛盾,把分析具体的数量与抽象的数之间的关系作为基本的教学方法。这样,使学生能在较高的水平上来理解分数应用题的数量关系,既提高了教学质量,又减轻了负担。整节课的设计,体现了在简明的结构中包含较大的知识容量。简明的结构,主要指再生能力较强的基本结构。这节课把分数所表示的两个量的倍数关系作为基本结构。这样的结构,具有数量关系之间的联结和转换功能,具有认知结构的同化和调整功能,它必须包含较大的知识容量,能将所包含的内容统筹兼顾,有主有从。这种简便而大容量的知识结构,还为学生提供了多层次的训练材料,使不同认知水平的学生在原有基础上得到不同程度的提高。
《分数乘法》教案篇5
一、梳理知识
1.怎样计算分数乘法
2.怎样的两个数互为倒数?怎样求一个数的倒数?
3.举例说说你能解决哪些用分数乘法计算的.实际问题。
二、基础练习
1.写出下面各题的数量关系式
(1)绿花的朵数是黄花的 。
(2)黄花的朵数比绿花多。
(3)一件上衣降价出售。
(4)实际比计划增产。
2.计算
21×= ×26= ×= ×15×=
3.计算下面各题,再观察每组题目和结果,你有什么发现?
4. ×16 ○16× 13 ○×13 ×○ ×○×
5. 米=( )厘米 吨=( )千克 w w w .x k b 1.c o m
时=( )分 平方米=( )平方分米
6. ×( )=( )×0.5=( )×6=( )×=1
三、应用练习
1.(1)黄花有50朵,红花是黄花的,红花有多少朵?
(2)黄花有50朵,红花比黄花多,红花比黄花多多少朵?
(3)黄花有50朵,红花比黄花多,红花有多少朵?
2.(1)食堂有吨煤,用去一部分后还剩。还剩多少吨?
(2)食堂有吨煤,用去吨。还剩多少吨?
(3)食堂有吨煤,用去。还剩多少吨?
(4)食堂有吨煤,用去。还剩几分之几?
3.一辆卡车1千米耗油升,照这样计算,行千米耗油多少升?50千米呢?
4.一件毛衣原来销售56元,现降低销售,降价多少元?现价是多少元?
5.小军家有5口人,早上每人喝一瓶升的牛奶,一共喝了多少升?每升牛奶大约含钙克,一瓶牛奶含钙多少克?
6.六年级一班有48名同学,二班的人数是一班的,三班的人数是二班的,六年级三班有多少人?
《分数乘法》教案篇6
教学目标:
1.组织学生动手实践、自主探究,明确把谁看作单位“1”,引导学生采用数形结合的方法——画线段图分析数量之间的关系。
2.引导学生从分数乘法意义的角度思考,理解“求一个数的几分之几是多少”应该用乘法计算,学会解决“求一个数的几分之几是多少”的实际问题。
3.使学生能综合运用所学的知识解决一些简单的问题,逐渐形成技能,增强应用意识;引导学生形成一些解决问题的策略,促进学生分析、判断和推理能力的发展。
重点难点:
1.掌握解决求一个数的几分之几是多少的方法,能解决相关实际问题;
2.理解算理,会用线段图正确地分析题意。
教学方法:
讲授法、讨论法、谈话法、探究法
教学准备:
教师准备多媒体课件。
教学过程:
一、回顾旧知,导入新课
谈话:我们在信息窗1和信息窗2已经初步解决了分数乘整数和分数乘分数的问题,还会做吗?
出示练习:20的4/5是多少?6的2/3 是多少?
请同学说一说这两个题为什么用乘法计算。
谈话:同学们,我们知道,已知求一个数的几分之几是多少,用乘法计算。这是乘法意义的扩展出现的新问题,运用这一知识还可以解决什么问题呢?今天我们就来一起研究。
二、合作探究,获取新知
(一)创设情境,提出问题
谈话:在学校举行的泥塑大赛中,同学们制作出许多精美
的作品,请看大屏幕。
出示课本10页的情境图和信息。
谈话:从图中你获取了哪些信息?
谈话:根据上面的信息你能提出什么数学问题?
学生提出问题,教师板书:一班男生做了多少件?二班女生做了多少件?
谈话:同学们提的问题比较准确,下面我们分别来解决这些问题。
(二)探究方法,建立模型
1.解决第一个问题:一班男生做了多少件?
谈话:请同学们尝试用自己喜欢的方法先来分析题目中数量之间的关系,再试着解决这个问题,不仅要得出答案,还要把道理说清楚。
(1)讨论操作。学生分小组进行尝试活动,教师巡视指导,了解信息。
(2)小组内说想法。
(3)交流展示。指名到展示台前进行汇报。
方法一:画线段图分析数量关系
谈话:你是怎样画图的?先画什么?再画什么?怎样想的?
学生回答的过程中,教师重点引领学生理解谁是找单位“1”,如何找单位“1”?如何在线段图中表示出已知条件“3/5”?
谈话:线段图是个很好的工具,同学们用的非常棒!它可以清楚表示出题中数量间的关系,这个工具用的好,即使以后解决一些复杂的问题也会得心应手。
方法二:不借助于直观图,直接列式解决
谈话:你是怎样想的?教师适时引领:题中哪句话是关键句?谁是单位“1”?“3/5”这个分数在题中的具体意义是什么?为什么用乘法做?
(男生做了总数的3/5,总数是单位“1”,把总数平均分成5 份,求其中的3份,也就是求15的3/5是多少,所以15×3/5)
2.学生自己解决第二个问题:二班女生做了多少件?
谈话:小组交流,自己想办法来分析题意,解决问题。组织学生汇报交流,说自己的分析思路,其他小组可以给予完善补充。
着重引导学生理解:谁是单位“1”?怎么找单位“1”?为什么画两条线段?结合学生汇报,教师课件动态演示p11图示
(三)观察比较
谈话:你在分析解决这两个问题时,有哪些相同点?哪些不同点?
学生回答时,教师适时引领:相同点都是“求一个数的几分之几是多少”,用乘法做;不同点是第一组是部分与整体的关系,通常画一条线段图来表示它们之间的关系,第二组是两种量之间的关系,通常画两条线段图来表示它们之间的关系。画线段图时通常先画出表示单位“1”的.量。
三、应用模型,解决问题
1.课本11页自主练习2:出示短吻鳄照片
帮助学生理解题意,引导学生利用画线段图的办法分析数量关系,自己列式解决问题。
2.自主练习4:这一题和第2题属于同一类型,都是研究部分与整体的关系,画一条线段图,让学生自主完成,全班交流自己的想法和思路。
3.自主练习
这一题与前两题有什么不同之处?研究的是两个数量之间的关系,应该怎样用线段图表示?
尝试自主解决,全班交流,说出自己的想法和思路。
四、引导总结,构建网络
谈话:我们应该如何解决“求一个数的几分之几是多少”的问题?(引导学生总结解决问题的方法)
五、作业布置
自主练习5、6题
板书设计:
求一个数的几分之几是多少”的实际问题
《分数乘法》教案优质6篇相关文章: