解方程例2教学反思推荐7篇

时间:
Gourmand
分享
下载本文

在结束了一个阶段的教学任务后,我们需要提笔写教学反思了,大家在进行了教学反思的书写后,可以让自己的教学过程更顺利,美篇六六网小编今天就为您带来了解方程例2教学反思推荐7篇,相信一定会对你有所帮助。

解方程例2教学反思推荐7篇

解方程例2教学反思篇1

本节课的教学重点和难点是:理解“方程的解”、“解方程”两个概念;会运用天平平衡的道理解简单的方程。在教学环节的设计和安排上,尽量为突破教学重点和难点服务,因此我进行了大胆的尝试,在讲解方程的解时,给学生一个明确的目的,告诉他们:“解方程就是为了求出“方程的解”而“方程的解”是一个神奇的数,由此引起了学生的好奇心,通过练习让学生充分感知“方程的解”的神奇之处。

1.本课主要对解方程进行了解题练习。通过抢夺小红花等游戏的形式大大提高了学生学习数学的乐趣和兴趣!

2、通过本课的作业检测,有少量学生还是对本课的内容练习不是很到位。需要教师在课下不断的指导。

3、学生对于方程的书写格式掌握的很好,这一点很让人欣喜.

人教版五年级数学上册《解方程》教学反思

解方程是数学领域里一个关键的知识,在实际中,拥有方程的解法之后,很多人不会算式解题,但是能用方程解题,足以见得方程可以做到一些算式无法超越的能力。

而如今五年级的学生开始学习解方程,作为教师的我更应该让学生吃透这方程,突破这重难点。在教这单元之前,我一直困惑解方程要采用初中的“移项解题,还是运用书本的“等式性质解题,面对困惑,向老教师请教,原来还有第三种老教材的“四则运算之间的关系解题,方法多了,学生该吸收那种方法呢?困惑,学生该如何下手,运用“移项解题,学生对于这个概念或许不会系统清晰,但是“等式性质解题时,在碰到a-x=b和a÷x=b此类的方程,学生能如何下手,“四则运算之间的关系老教材的方式改变,必有他的理由,能用吗?

困惑!我先了解改革的原因(摘自教学参考书):新教材编写者如此说明:长期以来,小学教学简易方程时,方程变形的依据总是加减运算的关系或乘除运算之间的关系,这实际上是用算术的思路求未知数。到了中学又要另起炉灶,引入等式的基本性质或方程的同解原理来教学解方程。小学的思路及其算法掌握得越牢固,对中学代数起步教学的负迁移就越明显。因此,现在根据《标准》的要求,从小学起就引入等式的基本性质,并以此为基础导出解方程的方法。这就较为彻底地避免了同一内容两种思路、两种算理解释的现象,有利于加强中小学数学教学的衔接。从这不难看出,为了和中学教学解方程的方法保持一致,是此次改革的主要原因。但是从另一方面看出老教材的方法并无错误,而且能让学生清楚准确地掌握实际解题,面对题目不会盲目,而采用等式基本性质给学生带来的是局部的衔接,而存在局部对学生会更困难,如a-x=b和a÷x=b此类的方程。

解方程例2教学反思篇2

解方程是是数学知识里面很关键很重要的一个知识点。,在实际中,拥有方程的解法之后,很多人不会算式解题,但是能用方程解题,足以见得方程可以做到一些算式无法超越的能力。而如今五年级的学生开始学习解方程,作为教师的我更应该让学生吃透这方程,突破这重难点。

在教这单元之前,我一直困惑解方程要采用初中的“移项”解题,还是运用书本的“等式性质”解题,面对困惑,向老教师请教,原来还有第三种老教材的“四则运算之间的关系”解题,方法多了,学生该吸收那种方法呢?困惑,学生该如何下手,运用“移项”解题,学生对于这个概念或许不会系统清晰,但是“等式性质”解题时,在碰到a-x=b和a÷x=b此类的方程,学生能如何下手,“四则运算之间的关系”老教材的方式改变,必有他的理由,能用吗?困惑!我先了解改革的原因(摘自教学参考书):新教材编写者如此说明:长期以来,小学教学简易方程时,方程变形的依据总是加减运算的关系或乘除运算之间的关系,这实际上是用算术的思路求未知数。到了中学又要另起炉灶,引入等式的基本性质或方程的同解原理来教学解方程。小学的思路及其算法掌握得越牢固,对中学代数起步教学的负迁移就越明显。

因此,现在根据《标准》的要求,从小学起就引入等式的基本性质,并以此为基础导出解方程的方法。这就较为彻底地避免了同一内容两种思路、两种算理解释的现象,有利于加强中小学数学教学的衔接。从这不难看出,为了和中学教学解方程的方法保持一致,是此次改革的主要原因。但是从另一方面看出老教材的方法并无错误,而且能让学生清楚准确地掌握实际解题,面对题目不会盲目,而采用等式基本性质给学生带来的是局部的`衔接,而存在局部对学生会更困难,如a-x=b和a÷x=b此类的方程。了解这一信息,我决定采用新老教材一起使用,先从教材中的运用等式基本性质教学孩子会解简单的方程,以便初中学习可以衔接,而初中的“移项”也会顺利的接收,但是面对现在五年级的思维和解题的方便性,我再教学老教材的“四则运算关系”解放程,至少这样能让现在的学生会解各种题型的方程。在我看来,这样的教学书本的知识不丢,方法又可以多种变通。所以我在教学解方程的时候,给他们灌输了两种方法,第一种方法就是课本上的根据等式的性质去解方程,另一种方式就是初中阶段的“移项”,在这里的时候,我给初中的“移项”起了一个新的名字:移——变号。引入了这一个方法,学生解方程的兴致有了很大的提高,解方程也变得容易了许多。

但是在移-变号这种情况下,有出现了21÷x=7,和20-x=3的这样的特殊情况,而我则让他们记住,只要x在后面,就要运用到四则运算“除数=被除数÷商”和“减数=被减数-差”这两种情况。通过练习,学生解方程正确率有了很大的提高,但是与之而来的是,学生忘了等式的兴致,忘了移—变号是怎么来的,而我,则在移-变号的基础上,再一次的回顾,让他们明白移-变号的立脚点就是等式的性质,如此反复,学生加强了对解方程的认识,也更牢固的记住了等式的兴致。而通过这一次的上课,我意识到,老师在上课之前,一定要更好的预设,只有在这样的情况下,生成的结果,才不会顾此失彼。而身为老师,一定要好好的研究教材,钻研透知识点,只有这样,才能够给学生清晰的思路。

解方程例2教学反思篇3

人教版五年级上册《解简易方程》这个单元中,教材是通过等式的基本性质来解方程,这个方法虽然说使得小学的知识与初中的知识更加的接轨,让方程的解法更加的简单。从教材的编排上,整体难度下降,对学生以后的发展是有利的。但是教材中故意避开了减数和除数为未知数的方程,如:a-x=b或a÷x=b,要求学生根据实际问题的数量关系,列成如x+b=a或bx=a的方程。这样的处理方法,有时也会无法避免地直接和方程思想发生矛盾。例如“爸爸比小明大28岁,小明Х岁,爸爸40岁。”很多学生列出了这样的方程:40-Х=28,方程列的是没有任何问题的,但是应该怎么解呢?允不允许学生用四则运算各部分的关系来解方程?是否该向学生讲解方法?还是让学生把此方程改成教材要求的那样的方程?如果要改成教材要求的方程,那就是在向学生传达这样的思想:这样的列法是不被认可的,那么以后在学习“未知数是减数和除数的方程”时,学生的思维不就又和现在冲突了吗?现在学习的节方程中,学生很容易看见加法就减,看见减法就加,看见乘法就除,看见除法就乘,如把30÷Ⅹ=15的解法教给学生,能熟练掌握并运用的学生很少,对大部分学生来说越教越是糊涂,把本来刚建构的解方程方法打破了。如果不安排,那么每次在出现的时故意回避吗?

在教学列方程解加减乘除解决问题第一课时,我是这样处理的。先出示做一做的题目,这题更接近学生的实际,学生也能更好理解数量关系。小明今年身高152厘米,比去年长高了8厘米。小明去年身高多少?先让学生读题理解题目中有哪几个量?引导学生进行概括,去年的身高、今年的身高、相差数。追问:这三个量之间有怎样的相等关系呢?

去年的身高+长高的8cm=今年的身高

今年的身高-去年的身高=长高的8cm

今年的身高-长高的8cm=去年的身高

你能根据这三个数量关系列出方程吗?学生尝试列方程。几乎全班学生都是正确的。

x+8=152 152-x=8 152-8=x

追问学生你对哪个方程有想法?学生一致认为对第三个方程有想法?生1:这个根本没有必要写x,因为直接可以计算了。生2:x不写,就是一个算式,直接可以算了。我肯定到:列算式解决实际问题时,未知数始终作为一个“解决的目标”不参加列式运算,只能用已知数和运算符号组成算式,所以这样的x就没有必要。接着让学生解这两个方程x+8=152 、152-x=8方程。学生发现152-x=8解出来的解是不正确的。告诉学生减数为未知数的方程我们小学阶段不作要求,所以你们就无法解答了。接着,我再引导学生观察这三个数量关系,他们之间有联系吗?其实减法是加法的'逆运算,是有加法转变过来。因此,我们在思考数量关系时,只要思考加法的数量关系,这是顺向思维,解题思路更加直截了当,降低了思考的难度。接着只要把未知数以一个字母(如x)为代表和已知数一起参加列式运算x+b=a,体会列方程解决问题的优越性。这就是我们今天学习的一种新的解决问题的方法——列方程解决问题。

接着用同样的教学方法探究bx=a的解决问题。

我这样的教学不知道是否合理?其实小学生在学习加减法、乘除法时,早就对四则运算之间的关系有所感知,并积累了比较丰富的感性经验。要不要运用等式的性质对学生再加以概括呢?

解方程例2教学反思篇4

用一元二次方程解决实际问题是初中数学教学阶段重难点,仍运用将实际问题转化为数学问题,从而抽象出数学模型——方程解决、验证实际问题这一重要的数学思想,而且,一元二次方程解法熟练灵活程度直接体现学生的基本解题素养,因此,学会分析问题审清题意、布列方程解好方程就成了本节课、本阶段的重点。而学生经四五年方程训练,已有运用方程解题的意识和技能,所缺的是分析问题、解决题解的自主思维能力、灵活的解题技能,所以也成了教学难点。

如何突出重点、突破难点?(1)采用抓住关键条件即处于变化中的数量及其关系,进行具化——“物”化,假设联想,从而发现数量间变化关系,布列出方程。例如在讲习题:某京剧团准备在市歌舞剧院举行迎春演出活动,该剧院能容纳800人。经调研,如果票价定为30元,那么门票可以全部售完,门票价格每增加1元,售出的门票数目将减少10张。如果只想获得元的门票收入,那么票价应定为多少元.?

分析:“如果人数多于30人,那么每增加1人,人均旅游费用降低10元”是指“(30+1)时人均旅游费用(800—10)元;(30+2)时人均旅游费用(800—10×2)元;(30+3)时人均旅游费用(800—10×3)元;(30+4)时人均旅游费用(800—10×4)元…自然增加x人,即(30+x)时人均旅游费用(800—10x)元。根据基本数量关系式,不难得到[800-10(x-30)]·x=或(800-10x)·(x+30)=。”

(2)反复提炼、对比优化思考过程,经过思、说、辩,从而内化为解题图式,学生因成功体验的累积产生解题自信心,有为的动力。如就同一方程创设了不同的问题情境,拓展了学生的思维视野,同化了不同问题情境的题,增强了学生举一反三、融会贯通的解题技能,收到事半功倍的效果。

(3)解方程要因题而异,先化简再转化为一般形式的方程,不要匆匆地展开,展开时做一步验一步,最终结合实际情况取舍方程的解。

尽管细致引导,不激励,不让其自圆其说,学生自我矫正系统掌握还是比较困难的。把课件当作激励启思载体,教学案当作技能形成的砺石,是我教学主要风格,本节课充分体现这点。

解方程例2教学反思篇5

本节课是《一元一次方程》的第三节的教学内容。解含有括号的一元一次方程既是本章的重点内容也是今后学习其他方程、不等式及函数的基础。前面学生已学习了合并同类项、移项以及整式的计算中的去括号等内容,会解“ax+b=cx+d”类型的一元一次方程,本节通过去括号为解方程起承上启下作用,但去括号时,学生容易弄错,是本章的重点,初步解决实际问题是本章的难点。

在进行本节课的教学中,我利用导学案引导学生做去括号的练习题,回顾去括号及规律,再试着去做含有括号的方程,让学生体会含有括号的方程在去括号时,与以前学的去括号的规律相同,解方程的过程也与前面学的相近,只不过多了去括号的这一步。我利用变式训强化训练,同时让学生初步感受利用方程解决实际问题。

本节课的教学中还存在一下几点不足之处:

1、语言衔接不够顺畅。

2、教师亲和力不够,不能充分调动学生的热情,课堂气氛不够活跃。

3、不能及时表扬和鼓励学生。

4、应用题的处理不够简洁。

在今后的教学中,我将努力改进自己的不足,力争取得更大的进步。

解方程例2教学反思篇6

作为教师,我们都有这样的体会:自然界的万事万物,事物息息相关,都是有联系的。知识是人类已经认识的世界,知识与世界“互映”。形象地说,知识也像一张大网,所有的知识都有千丝万缕的关系。每次学习的新知识只是网上的几个“结”,它与原有的知识经验之间有着必然的联系。在教师备课的过程中,需要了解每一个知识点的地位,也就是不仅要知道这些知识的源头在哪里?还要清楚这些知识会流向哪里。特级教师吴汝萍老师在《教育研究与评论》杂志上也有过这么一段观点:“源”,就是知识的源头,这个知识从哪里来,现在处在什么的位置;“流”就是这一知识有哪些应用,将来要“流”向哪里。

众所周知,教师需要一方面对知识的“源”与“流”进行梳理,即所谓的备教材;另一方面,更要清楚在学生脑海中这些知识的“源”与“流”会呈现怎样的精彩,即所谓的备学生。这是每个老师进行课堂教学前需要做的功课。

那么,学生呢?学生在课堂学习前需要做些什么呢?他们是不是也需要进行对知识“源”与“流”进行个性化的解读,猜想与质疑呢?下面笔者就自己这几年的实践研究,做一个简单的阐述:

近三年,我在“协同教育理论”指导下开展“小学数学绿树课堂”的实践与研究,其中让学生在课堂学习之前进行准备学习(后面谓之备学)是一个重点研究课题。

既然大家都认为学生不是如一张白纸来到我们的课堂,学生都是有着丰富的已有经验、个性色彩站立在课堂里的。那么,我认为,不仅教师需要备课,学生也需要备学。在我实验的初期,经常有老师问我一些问题,比如,备学的目的是什么?是不是就是提前学习?备学需要做些什么呢?

新知识是网上的一小部分,那么学生完全有能力找到与新知识有关系的知识经验、生活经验和思维经验,这些都是脑中的已有的信息,完全可以在课前搜集,哪些知识与新知学习是相关的,新知中的哪些问题是感到疑惑的。搜集已知,捕捉问题,看似简单的两个步骤,其实正是学生为新知的学习进行着“网游”,这种主动的行为就是一种“习”,“学而时习之,不亦乐乎“,不仅积极影响着学生的学习状态,而且进一步巩固了以前学过的知识,发展了学生的思维,也为教师的备学生了解学情提供了极大的的支撑。

举一个实例吧!五年级下册第一章节学习《方程》,我这样指导学生进行备学:

1、搜集天平的知识(可以问家长,可以查资料。)

2、阅读书p1—2,有哪些知识是你已经学过的?一一列举出来。

3、阅读书本后,你产生了什么问题?一一列举出来。

4、阅读范老师博客上的《关于方程的资料(1)》。

备学中,孩子们的真实思考最可贵,听听他们是怎么说的吧!

1、孩子们认为自己懂的地方有:

陆瑶:方程这一单元,里面有一个等式是我学过的,但是这里面有一个未知数。

天奕:把一个没有余数的算式,加、减、乘、除都可以,把一个数变成“x”,这就是方程。

李好:我发现用x表示一个未知数,是我们低年级下学期学过的知识。(用字母表示数)可那学期学的字母是求不出来的,可这里的字母却是求出来的。

小睿:像2+1=3、3-1=2这样的式子叫等式,其实我们在一年级时就已经认识了等式。

萱萱:我知道有一些数量关系式可以让我们求出未知数:减数+差=被减数、被减数-减数=差、被减数-差=减数、积÷乘数=乘数、乘数×乘数=积、除数×商=被除数、被除数÷除数=商、被除数÷商=除数。

小立:比如8+○=19,那么求○是多少,只需要用19减8,○是11,在这里是一样的,只不过把○换成了x。

我无法想象我独立备课或与其他老师集体备课是否会有这么具体生动的教学资源,反正在我课前浏览的那么多教育网站中,没有搜索到这些鲜活的内容。这些来自孩子真实的“最近学习工作区”的声音,不正是课堂教学之“源”吗!

2、孩子们认为不懂的地方有:

秦秦:如果x+3<100,那x是多少?

戴戴:方程为什么含有未知数?

小雯:x可以表示未知数,那么abc可以表示未知数吗?

干干:方程一定要有等式才可以成立吗?范老师,我妈妈有时看到我一些难题不会,就写什么x的,我终于知道了方程。

小雨:方程是用来解决什么问题的?面积问题,数量关系……

我很欣赏小雨的问题,这正是知识之“流”呀!因为它道出了学习方程的意义是什么?我们学习它,到底用它来解决哪类问题?小雨的问题,提醒我在教学目标设定中,一定要让孩子们学完这个知识后,拥有这样的判断力,思考力。

清儿:等式和方程有什么不同,那它们又是什么关系呢?

炜炜:不明白等式和方程有什么区别。

不少孩子问这个问题,说明对于式子、等式和方程的逻辑关系,学生需要老师的引导帮助!

晓哲:怎样才能算出未知数?

呵呵,小家伙们总是思维敏捷,总是透过窗户,看到更远的风景。

小楠:方程可以有大于号、小于号吗?

课上交流以后,相信孩子们会有正确的认识。

小叠:有没有乘法方程式?

通过翻阅孩子们的备学,我发现,不仅老师需要知道数学知识的“源”与“流”,学生也有能力发现数学知识的“源”与“流”。在发现的过程中,学生不断思考,回想,建构合理的认知结构,同时思维向青草更青处漫溯。

备学以后的讨论更有意思:

小璜益:方程不是一个完整的等式,因为有一个数是多少还不知道。

萱萱:我爸爸在教我做一些课外题时,他用的就是方程。

小叠:方程里用x来替代数字。

孩子们聊到兴头上的时候,有个孩子问,怎么才能知道方程里的未知数是多少?我说,你们随便考考我,我都知道。

小岩:x+100>120。

小欣:这个不是方程,方程必须是等式,这个不是等式。

小恺:x+110=210。

小欣把110听成了120,就说,x等于90。

孩子们一片疾呼:x等于100呀!!!

还有几个孩子站起来振振有词的解释x等于100的原因。

呵呵,意外的听错数字,却让我看到了孩子有极强的学习能力,还没有教,其实他们已经有了一些经验。这些现象,又将成为下一场备学的起点。

每节课的开始,找到一些结点,让孩子们动起身心,铺一些知识小路,老师顺着孩子的'思维去引导他们创造,探究,发现,总结,体会数学的简洁与抽象,发展自己思考的能力,那样的学习交流,是我所追逐的样子。

听听孩子们对备学的感性体会:

小欣:备学就像是吃饭前的开胃菜,帮助我们更好的去吃饭,吸收菜里的营养;备学就像是砍柴前磨了的刀,使砍柴更加轻而易举,更方便;备学就像是活动前的热身,使活动更加安全、快乐。备学给了我们一篇倾诉的天地,备学给了我们一个展示的舞台。我爱备学。

小涵:我觉得备学就像一颗知识的种子,当我们开始新一学期的备学旅途,就是在给这颗种子浇水、施肥,让它快快长大。当我们结束了一学期的备学后,这颗种子就长大了,长成了参天大树,树上的果实非常多,各有千秋。这些果实,就是我们每天记下的备学,备学后的与同伴交流所得的收获,就是我们努力后的回报。

奕奕:对我来说,备学就像是老师的备课,为了明天的课程而做准备,就像海棠花,冬天积蓄力量,到春天抽出枝条,绽放美丽。

备学,点击着孩子数学世界的“源”与“流”,更点击了一份学习数学的快乐与乐趣,孩子们享受备学,享受数学。

解方程例2教学反思篇7

本节课在《二元一次方程组》一章中占有重要地位。它是从现实生活中的数量关系产生的一个数学模型,是解决实际问题的有效策略。之前学生已经学过一元一次方程,之后还要学习一次函数、二次函数,因此二元一次方程组起着承前启后的作用。本节课主要是方法和思想的融合,下面就课改前后对这节课的教学作一反思:

新的教学理念要发挥学生的主体作用,充分参与探究知识的过程。在对二元一次方程组的解法探讨上,就利用中国古代鸡兔同笼的问题引入,让学生列出一元一次方程和二元一次方程组后,思考:一元一次方程2x+4(6-x)=22与二元一次方程组x+y=6(1)2x+4y=22(2)区别和联系?如何解方程组呢?让学生人组讨论、交流。教师深入到学生的讨论之中,引导学生从方程组与一元一次方程的结构或设未知数表示数量关系的角度观察。学生通过对比观察发现二者联系:y=6-x;用6-x代替方程(2)中的y,方程组就转化成一元一次方程2x+4(6-x)=22,进而求出x、y的值。学生从两种方程的不同中找出二者的联系,突破了难点,问题的提出是建立在学生现有知识的基础上,让学生在探究过程中体会化归思想。问题的设置符合学生认知规律,在学生已有知识——接一元一次方程的基础上,让学生再研究将二元一次方程组转化为一元一次方程的解法。大多数学生能在老师的引导下发现一元一次方程中的(6-x)就是方程组中的y,并且能用(6-x)代入y从而将方程组转化为一元一次方程。同时多数学生知代入消元法是解二元一次方程组的一种方法,消元化归的数学思想韵含在方法中,方法是有形的,思想是无形的。然后再出示一般形式二元一次的方程组进行练习,进一步体验消元化归思想。

从整节课来看,多数学生基本上能够运用所学新知解决问题,比课改前的效果好。但是对于学困生来说还是难度很大,学困生学习的问题时常困扰着我,今后要努力缩小学困生的面积方向发展。

解方程例2教学反思推荐7篇相关文章:

酸的性质教学反思7篇

四年级园地四教学反思7篇

美术教学反思优秀7篇

小学低年级教学反思7篇

神奇的力教学反思7篇

美术教学反思最新7篇

我们的脑教学反思通用7篇

故乡的云音乐教学反思7篇

有的人教学反思教学反思5篇

初中数学教师反思教学反思6篇

解方程例2教学反思推荐7篇
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
点击下载本文文档
88459