一份有针对性的教案能够满足学生的学习需求,激发求知欲的教案能够引导学生主动探索和追求知识,下面是美篇六六网小编为您分享的四边形教案6篇,感谢您的参阅。
四边形教案篇1
教学
目标综合运用平行四边形的性质和四边形是平行四边形的条件解决问题
重点
难点平行四边形的有关性质和四边形是平行四边形的条件的灵活的运用。
导学过程教师复备
(学生笔记)
复习回顾
1.平行四边形有哪些性质?
2.判别四边形是平行四边形的条件有哪些?
3.平行四边形的性质与条件的区别?
例题精讲
例1、如图,在□abcd中,点e、f分别在ab、cd上,ae=cf.四边形debf是平行四边形吗?为什么?
例2、如图,□abcd的对角线相交于点o,直线ef过点o分别交bc、ad于点e、f,g、h分别为ob、od的中点,四边形gehf是平行四边形吗?为什么?
反馈练习
1.如图,在□abcd中,ab=5,ad=8,∠a、∠d的'角平分线分别交bc于e、f,则ef=__________(在右边写出过程)
2.如图,在□abcd中,过其对角线的交点o,引一条直线交bc于e,交ad于f,若ab=2.4cm,bc=4cm,oe=1.1cm。则四边形cdfe的周长为多少?
3.如图,在□abcd中,点e、f在对角线bd上,且be=df.四边形aecf是平行四边形吗?请说明你的理由.
四边形教案篇2
教学内容:
教科书数学第八册第22~26页
教学目标:
1.通过观察操作认识平行四边形的特征,使学生在理解的基础上掌握平行四边形的面积计算公式,能正确地计算平行四边形的面积。
2.经历探索平行四边形面积计算公式的过程,使学生初步认识转化的思考方法在研究平行四边形面积时的运用。
3.培养观察、比较、推理和概括能力,渗透转化思想的空间观念。
教学重难点:
探索平行四边形面积计算公式的推导过程。
教具准备:
1.课件
2.教师准备一个平行四边形的纸片。
3.学生准备好学具
教学过程:
活动一:认识平行四边形的特征。
信息窗1,学生观察。
师:你发现了什么信息?你想提一个什么数学问题?学生以小组为单位讨论。
(生交流讨论的情况)
平行四边形的特征:对边平行且相等,对角相等。
师:什么叫平行四边形?(两组对边分别平行的四边形叫做平行四边形。)
师:先领学生复习平行四边形的底和高。再让学生指出平行四边形的底,指出它的高来。然后让每个学生在自己准备的平行四边形上画高。(教师巡视,注意画得是否正确。)
活动二:学习平行四边形面积的计算公式。
师:解决1号虾池的面积是多少。
我们已经知道1号虾池的形状是平行四边形的,要求1号虾池的面积,就是求平行四边形的面积,那么怎样求平行四边形的面积?请大家猜测一下。
学生活动:用手中的学具操作一下。
师:现在交流你们想出的方法。
师:同学们有各自的猜想,到底谁的对呢?用什么办法来验证。
师:哪个小组来汇报一下你们是怎样来验证的 ,你们的结论是什么?
提问:它们的面积怎么样?平行四边形的底和长方形的长怎么样?平行四边形的高和长方形的宽呢?
启发学生把比较的结果重复说一遍。平行四边形的底和长方形的长,平行四边形的高和长方形的宽分别相等,它们的面积也相等。
通过操作总结平行四边形面积的计算公式。
(1)从上面的比较中,你发现平行四边形的底、高和面积与长方形的长、宽和面积之间有什么联系?你能不能把一个平行四边形转化成一个长方形呢?想一想,该怎么做?让学生拿出准备好的平行四边形进行剪拼。(学生剪拼时,教师巡视。)然后指名到前边演示。
(2)教师示范平行四边形转化成长方形的过程。
刚才发现同学们把平行四边形转化成长方形时,就把从平行四边形左边剪下的直角三角形直接放在剩下的梯形的右边,拼成长方形。在变换图形的.位置时,怎样按照一定的规律做呢?现在看老师在演示。
教师归纳整理:任意一个平行四边形都可以转化成一个长方形,它的面积和原来的平行四边形的面积相等,它的长、宽分别和原来的平行四边形的底、高相等。
引导学生总结平行四边形面积计算公式。
这个长方形的面积怎么求?(指名回答后,在长方形右面板书:长方形的面积=长宽)
那么,平行四边形的面积怎么求?(指名回答后,在平行四边形右面板书:平行四边形的面积=底高。)
教学用字母表示平行四边形的面积公式。
板书:s=ah,
s=ah,或者s=ah。
应用总结出的面积公式计算平行四边形的面积。
师:现在来求:1号虾池的面积是多少?
学生列式:90x60=5400(平方米)
活动三:
解决2号虾池能放养多少尾虾苗?
交流答案,交流解题思路。
活动四:巩固练习
自主练习的1、2、5
活动五:
课堂小结:
这节课我们共同研究了什么?
怎样求平行四边形的面积?
平行四边形的面积计算公式是怎样推导出来的?
四边形教案篇3
教学目标
1、使学生在理解的基础上掌握平行四边形面积的计算公式,并会运用公式正确地计算平行四边形的面积。
2.通过操作、观察、比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力和逻辑思维能力。
3.对学生进行辩诈唯物主义观点的启蒙教育。
教学重点
理解公式并正确计算平行四边形的面积。
教学难点
理解平行四边形面积公式的推导过程。
教学过程
一、复习引入
1.拿出事先准备好的.长方形和平行四边形。量出它的长和宽(平行四边形量出底和高)。
2.观察老师出示的几个平行四边形,指出它的底和高。
3.教师出示一个长方形和一个平行四边形。
猜测:
哪一个图形面积比较大?大多少平方厘米呢?
师:要想我们准确的答案,就要用到今天所学的知识--平行四边形面积的计算(板书课题)
二、指导探究
1.数方格方法
(1)小组合作讨论:
a.图上标的厘米表示什么?每个小方格表示1平方厘米为什么?
b.长方形的长是多少厘米?宽是多少厘米?面积是多少平方厘米?
c.用数方格的方法,求出平行四边形的面积?(不满一格的,都按半格计算)
d.比较平行四边形的底和长方形的长,再比较平行四边形的高和长方形的宽,你发现了什么?
(2)集体订正
(3)请同学评价一下用数方格的方法求平行四边形的面积。
(麻烦,有局限性)
2.探索平行四边形面积的计算公式。
(1)教师讲话:不数方格怎样能够计算平行四边形的面积呢?想一想,如果我们把平行四边形转化成我们过去学过的图形,就可以根据已学过的面积公式计算出它的面积了,转化成什么图形,怎样转化呢?请大家拿出手里的学具试试看。
(2)学生动手剪拼(可以小组合作),并向周围同学说一说是怎样转化的。
(3)同学到前面演示转化的方法。
(4)教师演示课件并组织学生讨论:
①平行四边形和转化后的长方形有什么关系?
②怎样计算平行四边形的面积?为什么?
③如果用s表示平行四边形的面积,用a表示平行四边形的底,用n表示平行四边形的高,那么平行四边形面积的字母公式是什么?
3、应用
例1一块平行四边形钢板,它的面积是多少?(得数保留整数)
4.83.517(平方米)
答:它的面积约是17平方米。
三、质疑小结
今天你学到了哪些知识?怎样计算平行四边形面积?
四、巩固练习
1、列式并计算面积
①底厘米,高厘米,
②底米,高米,
③底分米,高分米
2、说出下面每个平行四边形的底和高,计算它们的面积。
3、应用题
有一块地近似平行四边形,底是43米,商是20.1米,这块地的面积约是多少平方米?(得数保留整数)
4、量出你手里平行四边形学具的底和高,并计算出它的面积。
四边形教案篇4
练习要求:使学生进一步掌握平行四边形、三角形和梯形的面积公式,能正确、熟练地计算它们的面积。
练习重点:正确运用公式计算所学的图形的面积。
教具准备:投影
教学过程:
一、基本练习
1.回答下列各图面积地计算公式和字母公式。
长方形长×宽ab
正方形边长×边长a2
平行四边形底×高ah
三角形底×高÷2ah÷2
梯形(上底+下底)×高÷2(a+b)h÷2
2.平行四边形、三角形、梯形的面积公式是怎样推导出来的?
二、指导练习
1.练习十八第12题:计算下面每个图形的面积。
3米8米12米
5.6米9.5米12米
5厘米
5.4
分5.8厘米5.2厘米
米
3分米5厘米7厘米
⑴省独立审题,计算每个图形的面积。
⑵师巡视,看同学们在计算书三角形和梯形的的'面积时是否注意了“除以2”
⑶指6名学生板演,集体订正。
2.练习十八第15题。生独立审题并计算出三角形的面积,注意单位的换算。
三、课堂练习
练习十八第14题
四、攻破难题
1.16题:一个鱼塘的形状是梯形,它的上底长21米,下底长45米,面积是759平方米。它的高是多少?
分析与解:
⑴已知梯形的面积=(上底+下底)×高÷2
⑵上底+下底=21+45=66米
⑶高=759÷66×2=23米20厘米
2.17题:已知右面梯形的上底
是20厘米,下底是34厘米,其中涂色
部分的面积是340平方厘米。这个梯形
的面积是多少?34厘米
分析与解:要求梯形的面积,但不知道高。根据阴影部分是三角形,又知道三角形的面积和底,可以求出它的高,也就是梯形的高,再算出梯形的面积。
高:340×2÷34=20厘米,
面积:(34+20)×20÷2=540平方厘米
3.18题:在下面的梯形中,剪下一个最大的三角形,剩下的是什么图形?剩下的图形的面积是多少平方厘米?
15厘米
12厘米
25厘米
分析与解:以下底为底,一上底上的任意一点为三角形的顶点剪下的三角形都是最大的。因为所有的三角形的底和高都没有变,剩下的图形可能是一个三角形,也可能是两个三角形。
(15+25)×12÷2=240平方厘米
25×12÷2=150平方厘米
240-150=90平方厘米
4.思考题4厘米
右图中,梯形的面积是7212
平方厘米。请你算出阴影厘
部分的面积。米
解法一:先算出没有阴影部分
的面积:4×12÷2=24平方厘米,
再用梯形的面积减去这个三角形
的面积:72-24=48平方厘米。
解法二:阴影部分是一个三角形,这个三角形的高是12厘米,底与梯形的下底是同一条线段,先算出梯形的下底:
72×2÷12-4=8厘米
再算阴影部分的面积:8×12÷2=48平方厘米。
五、作业
练习十八11、13题
四边形教案篇5
教学内容:教科书第12—13页的例1、例2、例3,“试一试”和“练一练”,第14页的练习二。
教学目标:
1.知识目标:使学生通过实际操作和讨论思考,探索并掌握平行四边形的面积公式,并能应
用公式正确计算平行四边形的面积。
2.能力目标:使学生经历观察、操作、测量、填表、讨论、分析、归纳等数学活动过程,进一步体会“等积变形”的思想方法。
3.情感目标:培养空间观念,发展初步的推理能力。
教学过程:
一、复习导入。
1.说出下面每个图形的名称。(电脑出示)
2.在这几个图形中,你会求哪些图形的面积呢?
3.大家想不想知道平行四边形的面积怎么求?今天我们一起来研究“平行四边形面积的计算”。(揭示课题)
二、探究新知。
1.教学例1。
(1)出示例l中的第一组图形。
提出要求:这儿有两个图形,这两个图形的面积相等吗?在小组里说一说你准备怎样比较这两个图形的面积。学生分组活动后组织交流。
对学生的交流作适当点评,使学生明白两种不同的比较方法都是可以的:即数方格比较大小或把左边的图形转化后与右边的'图形进行比较。
(2)出示例l中的第二组图形。
提出要求:你能用刚才的方法比较这两个图形的大小吗?
学生分组活动后组织交流,在学生的交流中,教师适当强调“转化”的方法。
(3)小结:把不熟悉的图形转化成学过的图形,并用学过的知识解决问题,这是数学上一种很重要的方法——转化。这种方法在数学学习中经常要用到。
2.教学例2。
(1)出示画在方格纸上的平行四边形。提问:你能想办法把图中的平行四边形转化成长方形吗?
(2)学生操作,教师巡视指导。
(3)学生交流操作情况。
提出要求:谁愿意把你的转化方法说给大家听听?(让学生用实物投影演示剪、拼过程)
提问:有没有不同的剪、拼方法? (继续请学生演示)
教师用课件演示各种转化方法,进行小结。
(4)讨论:刚才大家把平行四边形转化成长方形时,都是沿着平行四边形的一条高剪的。大家为什么要沿着高剪开?
启发学生在讨论中理解:沿着高剪开,能使拼成的图形出现直角,从而符合长方形的特征。
(5)小结:沿着平行四边形的任意一条高剪开,再通过平移,都可以把平行四边形转化成一个长方形。
3.教学例3。
(1)提问:是不是任意一个平行四边形都能转化成长方形?平行四边形转化成长方形后,它的面积大小有没有变?与原来的平行四边形之间有什么联系?
(2)操作:请大家从教科书第123页上选一个平行四边形剪下来,先把它转化成长方形,并求出面积,再填写下表:
转化成的长方形 平行四边形
长(cm) 宽(cm) 面积(c㎡) 底(cm) 高(cm) 面积(c㎡)
(3)小组讨论:
①转化成的长方形与平行四边形面积相等吗?
②长方形的长和宽与平行四边形的底和高有什么关系?
③根据,长方形的面积公式,怎样求平行四边形的面积?
(4)反馈、交流,抽象出面积公式。
根据学生的讨论进行如.下的板书:
因为 长方形的面积二长×宽
所以 平行四边形的面积二底×高
(5)用字母表示公式。
如果用s表示平行四边形的面积,用a和h分别表示平行四边形的底和高,那么你能用字母写出平行四边形的面积公式吗?
结合学生的回答,板书:
s=ah
(6)指导完成“试一试”。
先让学生根据题意独立解答,再通过指名板演和评点,明确应用公式求平行四边形面积一般要有两个条件,即底和高。
三、巩固深化。
1.指导完成“练一练”。先让学生独立计算,再让学生说说每个平行四边形的底和高分别是多少,计算时应用了什么公式。
2.指导完成练习二第1题。
(1)明确要求,鼓励学生尝试操作。
(2)讨论:长方形的长、宽、面积各是多少?要使画出的平行四边形面积与长方形相等,它的底和高可以分别是多少?
(3)学生继续操作后展示作品。引导学生对展示的平行四边形进行判断,是否符合题目的要求。
3.指导完成练习二第2题。
先让学生指出每个平行四边形的底和高,再让学生各自测量计算。
提醒学生:测量的结果取整厘米数。
4.指导完成练习二第3、4两题。
先让学生独立解答,再通过交流说说自己解决问题的思路。
5.指导完成练习二第5题。
(1)同桌两人分别按要求做出长12厘米,宽7厘米的长方形。一个长方形不动,另一个长方形拉成平行四边形,平放在桌上。
(2)指导观察、思考。
要求学生认真观察做成的长方形和用长方形拉成的平行四边形,想一想,它们的周长相等吗?为什么?面积呢?
(3)指导测量、计算,验证猜想。
(4)连续拉动长方形,启发思考面积的变化有什么特点。
四、全课小结。
通过今天的学习活动,你学会了什么?有哪些收获?
教学后记
通过平移转化成长方形计算面积, 使学生了解用数方格方法计算面积时不满整格的都按半格计算,同时初步学会用这方法估计并计算不规则物体表面的面积。 使学生体会平移后图形的面积不变,感受转化的策略。体会平移后图形的面积不变。
四边形教案篇6
教学内容:练习十九的第11~15题。
教学目的:通过练习,使学生进一步熟悉平行四边形、三角形、梯形面积的计算公式,提高计算面积的熟练程度。
教具准备:将复习题中的平行四边形、三角形、梯形画在小黑板上。用厚纸做一个平行四边形、两个完全一样的三角形和两个完全相同的梯形。
教学过程:
一、复习平行四边形、三角形、梯形面积的计算公式。
出示下列图形:
问:这3个图形分别是什么形?(平行四边形、三角形和梯形)
平行四边形的面积怎样计算?公式是什么?(学生回答后,教师板书:s=ah)
平行四边形的面积计算公式是怎样推导出来的?(教师出示一个平行四边形,让一学生说推导过程,教师边听边演示)
三角形的面积怎样计算的?公式是什么?(学生回答后,教师板书:s=ah÷2)
为什么要除以2?(学生回答,教师出示两个完全相同的三角形,演示用两个三角形拼摆一个平行四边形的过程)
梯形的面积是怎样计算的?公式是什么?(学生回答后,教师板书:s=(a+b)h÷2)
梯形的面积计算公式是怎样推导出来的?(学生回答,教师演示用两个完全相同的梯形拼摆一个平行四边形的过程。)
量出求这3个图形面积所需要的线段的长度。(让学生到黑板前量一量,并标在图上。让每个学生在自己的练习本上计算出这3个图形的面积,算完后,集体核对答案)
二、做练习十九中的题目。
1、第12题,先让学生说一说题中的图形各是什么形,再让学生独立计算。教师注意巡视,了解学生做的情况,核对时,进行有针对性的讲解。
2、第13题和第15题,让学生独立计算,做完后集体订正。
3、第18题,学生做完后,可以提问:在梯形中剪下一个最大的三角形,你是怎样剪的?
这个最大的'三角形是唯一的吗?为什么?(不是唯一的,因为以梯形的下底为三角形的底,顶点在梯形的上底上的三角形有无数个,它们的面积是相等的。)
4、练习十九后面的思考题,学生自己试做。教师提示:这道题可以用梯形面积减去以4厘米为底,以12厘米为高的三角形的面积来计算;也可以用含有未知数x的等式来计算。
三、作业。
练习十九第11题和第14题。
课后小结:
四边形教案6篇相关文章: